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Abstract

Lie bialgebra structures are reviewed and investigated in terms of the double Lie algebra, of
Manin- and Gauss-decompositions. The standard R-matrix in a Manin decomposition then givesrise
to several Poisson structures on the correponding double group, which is investigated in great detail.
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1. Introduction

In [2] we described a wide class of symplectic structures on the cotangent bundle 7*G
of a Lie group G by replacing the canonical momenta of actions of G on T*G by arbitrary
ones. This method also worked for principal bundles and allowed us to describe the notion
of a Yang—Miills particle which carries a ‘charge’ given by spin-like variables, by means of
Poisson reduction.
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In the latter half of this paper we consider ‘deformations’ of 7*G in the form of so called
double Lie groups equipped with the analogs of the symplectic structure on T*G, closely
related to Poisson-Lie groups. Parts of the results may be found spread over different places,
mainly in the unfortunately unpublished thesis of Lu [20], but also to some extend in [1,33],
and others. Our presentation makes the double group the main object rather than Poisson—
Lie groups, which makes the roles of G and G* manifestly symmetric and contains all the
information about G and G* and all relations between them. All these are also associated
to the theory of symplectic groupoids as ‘deformed cotangent bundles’ in general, and with
mechanical systems based on Poisson symmetries as studied for instance in [23,36]. The
explicit formulae from the second part have already found applications in [3].

The first half of this paper is devoted to the general setup: Recall that a Poisson—Lie
group is a Lie group G with a Poisson structure A € I" (A>T G) such that the multiplication
map G x G — G is a morphism of the Poisson manifolds. The corresponding infinitesimal
object, which determines a Poisson-Lie group up to a covering, is that of a Lie bialgebra,
defined by V.G. Drinfeld. It is defined as a Lie algebra (q,5 = [ , ]) together with the
structure of a Lie algebra (g*, 5’ = [ , ]) on the dual space g* such that the bracket b’
defines a cocycle b’ : g — AZq on g with values in the g-module AZg. The brackets b, b’
define the structure of a metrical Lie algebra on [ = g & g* with Manin decomposition.
Recall that a metrical Lie algebra is a Lie algebra together with a non-degenerate ad-invariant
bilinear symmetric form g (the metric), and that a Manin decomposition is a decomposition
of a metrical Lie algebra into direct sum of two isotropic subalgebras. The metric g on (
is defined by the conditions that the subspaces g, g* are isotropic and the restriction of g
on g x g* is the natural pairing. Hence, there is a natural bijection between Poisson-Lie
groups (up to a covering), bialgebras, and metrical Lie algebras with Manin decompositions.
Remark that not every metrical Lie algebra admits a Manin decomposition [8]. We recall
some basic constructions and facts on metrical Lie algebras in 2.4-2.7. A bivector C € A%g
on a Lie algebra g defines a cocycle

0C . g —> /\2_q, X +— adxC.

Moreover, C defines a structure of a Lie algebra on g* if and only if the Schouten bracket
[C, C]is ad, invariant. This condition is called the modified Yang-Baxter equation.

For a metrical Lie algebra (g, g) a bivector C can be identified with an endomorphism
R = C o g (the ‘R-matrix’). In terms of this endomorphism the modified Yang-Baxter
equation (and other equations implying this) reduces to the generalized R-matrix equation
(and some modifications of it), see (2.9). A Manin decomposition ¢ = g4+ @ g_ of a
metrical Lie algebra g provides a solution R = pr, — pr_ of the R-matrix equation. More
generally, we define a Gauss decomposition of a metrical Lie algebra g as a decomposition
a=q4 ®1°@®g_ of g into a sum of subalgebras suchthat g, g_ are isotropic and orthogonal
to ¢°. Any solution R of the R-matrix equation (1-mYBE) on ¢°, see 2.9, can be extended
to a solution R = diag(—1, R, 1) of the same equation on g. Moreover, if R has no
eigenvalues %1, then g is solvable and R? is the Cayley transform of an automorphism
A of G° without fixed points: R® = (A + 1)(A — 1)~!. Conversly, any R-matrix R on a
metrical Lie algebra g defines some Gauss decomposition.
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In 2.15 we give some simple constructions of Gauss decompositions of a metrical Lie
algebra and its associated R-matrix. Remark that the problem of describing all bialgebra
structures on a given semisimple Lie algebra g (or the equivalent problem of determining
all Manin decompositions ¢ = a4 @ g— of metrical Lie algebras ¢ with given g ) is solved
only forasimple Lie algebra g, [6,9]. The construction of Weinstein of a bialgebra structure
on a compact semisimple Lie algebra shows that in general the isotropic subalgebras ¢,
q— of a Gauss decomposition of a semisimple Lie algebra ¢ are not necessarily solvable.
However, this is true if the metric g coincides with the Killing form of g, see [9].

The second part of the paper is devoted to explicit description of global versions of some
objects which are studied in the first part. The basic object is the double Lie group G which
corresponds to a metrical Lie algebra ¢ with a Manin decomposition ¢ = a4 @ q—. We
describe explicitly different natural Poisson and affine Poisson structures on a double group
G and the dressing action of subgroups G4, G_ associated with the isotropic subalgebras

a4+, 40—

2. Lie bialgebras, Manin triples, and Gauss decompositions

2.1. Lie bialgebras and Lie-Poisson groups. A Lie bialgebra [11] consists of a (finite-
dimensional) Lie algebra ¢ with Lie bracketb =[ . ] € A2q* ® g and an element b €
A2g ® a* such that the following two properties hold:
(1) bisal-cocycleg — A%q:9pb" = Owhere (3,b')(X,Y) = —b'([X, Y] +adx (b’ (Y))—
ady (5'(X)). To put this into perspective, note that this is equivalent to the fact that
X — (X, b’ (X)) is ahomomorphism of Lie algebras from g into the semidirect product
g< A% g with the Lie bracket [(X, U), (Y, V)] = ([X, Y], adx V — adyU).
(2) b’ is a Lie bracket on g*.
In [17] a graded Lie bracket on A(g x ¢*} is constructed which recognizes Lie bialgebras,
their representations, and gives the associated notion of Chevalley cohomology.

2.2. Exact Lie bialgebras and Yang-Baxter equations. A Lie bialgebra (g, b, b") is
called exact if the 1-cocycle b’ is a coboundary: b’ = 8,C for C € A2g, ie., b'(X) =
adxC. A bivector C € A%q defines a Lie bialgebra structure ' = 3,C on g if and only if
the Schouten bracket (see 3.4) is ad(g)-invariant:

(mYBE) [C.C] e (AP

This condition is called the modified Yang—Baxter Equation. In particular any Poisson
bivector C € A%g satisfying

(YBE) [C.C]1=0

defines a bialgebra structure &' = 8,C in g. This equation is called the Yang—Baxter
Equation.

If ¢ is semisimple then by the Whitehead lemma H! (g, /\zg) = 0, so any cocycle &' is a
coboundary, and the classification of all bialgebra structures on g reduces to the description



D. Alekseevsky et al. / Journal of Geometry and Physics 26 (1998) 340-379 343

of all bivectors C € A%g which satisfy (mYBE). If moreover the Lie algebra g is simple
then the space (A%g)9 is one-dimensional, generated by the 3-vector B8 € A’q given by
B8(a, B,y) = g(g '@, g7 ' 81, g~ 'y), where g denotes the Cartan—Killing form. So for
simple g the modified Yang—Baxter Equation (mYBE) can be written, using the Schouten
bracket, as

[C,C]=cBS5.

All solutions of this equation for ¢ # 0 for complex simple g were described in [6,9].

2.3. Manin decompositions. Let (g, b) be a Lie algebra and let ' be a Lie bracket on the
dual space g*. Let us define a skew symmetric bracket [ , ] on the vector space [ := g¢@ g*
by

[(X, @), (Y, B)] : = (b(X, V) + ad’ (@)Y —ad’(B)X,
b'(a, B) + adf(X)B — adj(YV)a),

where adp(X)Y = b(X.Y), ad;(X) = adp(—X)* € End(g*), and similarly for »". The
adjoint operator ad(X, @) € End([) is skew symmetric with respect to the natural pseudo-
Euclidean inner product g on [ which is given by g((X, «), (¥, 8)) = {«, Y) + (8, X). and
the skew symmetric bracket is uniquely determined by this property. The skew symmetric
bracket [ , ]on [ satisfies the Jacobi identity if and only if b’ : ¢ — AZ2gqis a I-cocycle with
respect to b: 9,b" = 0; or equivalently if and only if b : ¢* — AZg* is a 1-cocycle with
respect to b": 3y'b = 0.

Following Astrakhantsev [4] we will call metrical Lie algebra a Lie algebra [ together
with an ad-invariant inner product g: g(IX, Y], Z) = g(X, [Y. Z]).

A decomposition of a metrical Lie algebra ([, g) as a direct sum [ = g+ @ g of two
g-isotropic Lie subalgebras g and g_ is called a Manin decomposition.

A triple of Lie algebras (g, g4, a-) together with a duality pairing between g4 and g.-
is called a Manin triple if ¢ = g1 @ q_, a+ and g_ are Lie algebras of g, and the duality
pairing induces an ad-invariant inner product on g for which g and g_ are isotropic.

Theorem [10]. There exist a natural bijective correspondence between Lie bialgebras
(a, b, b") and metrical Lie algebras (1, g) with Manin decomposition | = q @ g*.

The Lie algebra [ = q @ g* associated (o the Lie bialgebra (g, b, b') is called the Manin
double.

2.3. Examples of metrical Lie algebras. Any commutative Lie algebra has the structure
of a metrical Lie algebra, with respect to any inner product. Any semisimple Lie algebra is
metrical, the metric is given by the Cartan—Killing form.

Let g be a Lie algebra. Let us denote by T*g = ge< ¢* the semidirect product of the
Lie algebra g with the abelian ideal g*, where g acts on g* by the the coadjoint action. This
is the Lie algebra of the cotangent group T*G of a Lie group G with Lie algebra g. The
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natural pairing between g and the dual g* defines an ad-invariant inner product g on 7*g for
which the subalgebras g and g* are isotropic, by definition of the coadjoint action. Hence
T*q = q & q* is a Manin decomposition of the metrical Lie algebra 7*q. It describes the
Lie bialgebra structure b’ = 0 on g.

2.5. We will now describe the double extension of a metrical Lie algebra according to Kac
[14, 2.10] and Medina and Revoy [25]: Let (g, g) be a metrical Lie algebra and let b be
a Lie algebra together with a representation p : d — Dergew (. ) by skew symmetric
derivations on g. We then put

G =g,
[Dr+ X +oa. Dy + Xo+ az]
= [Dy, Daly + [X1. X2ly + p(D1)(X2) — p(D2)(X1)
+ (X, X2) + adl (D) (a2) — ad{(D2)(y).
D1+ X1 +0a1. D24+ X7 +a2)
= g(X1, X2) + (a1, D2} + (2. Dy),

where the central cocycle ¢ : g x ¢ — d* is given by (D, c(X, ¥)) = g(p(D)(X), Y) for
D € b. Then gy is again a metrical Lie algebra. Note that the metrical Lie subalgebra b @ b*
is isomorphic to the cotangent Lie algebra 7*d and that we may view g, as the semidirect
product gy = d< ), where ) is the central extension

0> —>h—>qa—-0

described by the cocycle ¢ and where b acts on ) by (p, ad;).

The orthogonal direct sum of two metrical Lie algebras is again a metrical Lie algebra.
In particular the orthogonal direct sum of a metrical Lie algebra g with a one-dimensional
abelian metrical Lie algebra is called the trivial extension of g.

Theorem (Kac [14, 2.11]; Revoy, Medina [25]). Any solvable metrical Lie algebra can be
obtained from a commutative metrical Lie algebra by an appropriate sequence of double
extensions and trivial extensions.

2.6. The following result gives an analogon of the Levi-Maltsev decomposition for a met-
rical Lie algebra.

Theorem (Astrachantsev [4]). Any metrical Lie algebra q is an orthogonal direct sum
a=00r=5,0T" &r

consisting of a subalgebra by with commutative radical and a solvable ideal x. Moreover, §)
is an orthogonal direct sum of a maximal g-non-degenerate semisimple Lie subalgebra s,
and the cotangent algebra T*3; of a maximal g-isotropic semisimple Lie subalgebra s; of o.
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2.7. Metrical extensions. Bordemann {8] gave the following construction of a metrical
Lie algebras.

Let a be a Lie algebra and let w : a A a — a* be a 2-cocyle with values in the a-module
a*. Then the Lie algebra extension

0> a" > qpy—>a—->0
described by w, i.e. the Lie algebra gy, := a @ a* with bracket

[(a, a), (b, B)),,. := ([a.bly, wia, b) + ad*(a)B — ad*(b)x)
is a metrical Lie algebra with metric

glla.a), (b. ) = (a. b) + (B. a)
if and only if w has the following property

{a,wb,c)) = (b, w(c,a)y fora,b,cea.

If w = O then this is exactly the metrical Lie algebra 7*a ~ thus Bordemann called this
construction the 7*-extension.

Theorem [8]. Any 2n-dimensional complex solvable metrical Lie algebra q is a metri-
cal extension of some n-dimensional Lie algebra a. Moreover any isotropic ideal of q is
contained in an n-dimensional isotropic commutative ideal of g.

2.8. The Yang-Baxter equations on metrical Lie algebras.

In the case of a metrical Lie algebra (g, g) we can pull down one index of bivector
C € A’g and we can reformulate the (modified) Yang—Baxter equation in terms of the
operator R=Cog:q— a* — qa.

First let (q, b = [ . ]) be a Lie algebra. For any R € End(q) we define two elements
br, Bg € q® A%g* by

br(X,Y)=[X.Y]g :=[RX Y]+ [X.RY],
Br(X.Y) :=[RX,RY] - R[X.Y]lgr =[RX, RY] - R[RX,Y] — R[X,RY].
Note that B is related to the Frolicher—Nijenhuis-like bracket [R, R] by

IR, RIX.Y)=[RX,RY]— RURX.Y1+[X,RYD + R*[X. Y]
= Br(X.Y)+ R*[X,Y].

Proposition. Ler (g, g) be a metrical Lie algebra, let C € A2qandlet R = C o g:q—

a* — q be the corresponding operator. Then we have:

(1) Viathe isomorphism g’l s q* — qrhe bracker b = 8,C € ¢* @ A2gon g* corresponds
to the bracket bg on q:

¢ W@ ) =brg . g7 B) = g7 o g BIk. fora. B g’



346 D. Alekseevsky et al. / Journal of Geometry and Physics 26 (1998) 340-379

(2) Under the embedding Aq — a® AZq* induced by g, the Schouten bracket [C, C] €
A3q corresponds to the element 2Bg € q @ A2g*.

Proof Let X,Y,Z eqganda = gX, B = gY € q*. Note that g(RX,Y) = g(X, —RY).
Then

(Z,b'(a, B)) = (adzC,a A B) = (C, (adz)*@ A B+ a A (adz)"B)
={(C, (adz)*gX A g¥ + gX A (adz)*gY)
=(C, —gadzX A gY —gX A gadzY)
=—(CgadzX, gY) — (CgX, gadzY)
=—g(R[Z.X].Y)—g(RX,[Z.Y])
=g(Z,[X,RY]) + g(IRX. Y]. Z)
=(Z,g[X, Y1r).

For proving the second assertion we may assume without loss that C € A”g is decom-
posable, C = X A 'Y, since both sides are quadratic. Then we have:

R(Z)=(Cog)Z)= (X NY)og)Z)=g(Y. 2)X — g(X, Z)Y.
Br(U,V)=[RU,RV]—R[RU,V]—-R[U, RV]
=[BT, U)X —g(X,U)Y, g(¥Y, V)X — g(X, V)Y]
-8, [g(Y. U)X — (X, U)Y. VDX
+ ¢(X, [g(Y, U)X — g(X, U)Y. V])Y
- &Y, [U,g(Y, V)X — g(X, V)Y]X
+ (X, [U, g(Y, V)X — g(X,. V)Y])Y
= =g, U)g(X, V)[X, Y] — g(X. U)g(Y, V)IY. X]
— (Y. U)g(lY, X], V)X — g(X. U)g([X. Y], V)Y
+ (Y, V)g([Y, X], U)X + g(X, V)g(IX, Y] U)Y.

On the other hand we have for the Schouten bracket

[C.Cl=[XAY,XAY]|=2[X.Y]AXAY.

HIC.CllangU AgV)

= (X, YIAXAY,aAgUAgV)
(X.Yl,ey  (X.a) (Y,0)

=det| g([X. Y] U) gX,U) g, U)
g([X.YLLV) g(X,V) g, V)

= (Br(U, V), a},

from the computation above. O



D. Alekseevsky et al. / Journal of Geometry and Physics 26 (1998) 340-379 347

Remarks. We may extend R +— Bp to a bracket in Ag* ® g as follows. On decomposable
tensors this bracket is given by

RX, Yy RYI=9pAyYy Q[X, Y]+ radyy QY
—adje A Y ® X,

and it defines a Z-graded Lie bracket on A*gq* ® g. If g acts by derivations on a graded
commutative algebra A = @72 A;, the same formulae define a graded Lie bracket on
A®aq.

Moreover we have B = %[R . R18, and by the graded Jacobi identity we get the analogon
of the Bianchi identity [R, Bg]1? = 0.

The invariant inner product g : ¢ — ¢* induces an embedding

/\*+lg s /\*ﬂ* ®(J,

which is a homomorphism from the Schouten bracket to the graded Lie bracket [ |, 18.
This follows from the polarization of (2) in the proposition above (note that the brackets in
degree 1 are symmetric), since q and A2q generate the whole Schouten algebra.

On a manifold one may also consider the bracket [ ., 1% but it maps tensor fields to
differential operators.

There is a homomorphism of graded Lie algebras

A0l . 15— @%@, [, 1Y),
ap A Ao @ Xi>day A Aday ® adg (X)),

where £2(q, a) = £2(q; Tq) is the graded Lie algebra of all tangent space valued differential
forms on g with the Frolicher-Nijenhuis bracket. The kernel of this homomorphism consists
of A*q* ® Z(q) where Z(q) is the center of q. All these follow from the well-known formula
for the Frolicher—Nijenhuis bracket (see e.g. [16, 8.7])

lg®EYRN=pAYREN+PALY @ —Lyp AP ®E
+ (=D e A gy R n+iyp AdY ®E).

where ¢, ¥ € §2(q) are differential forms and where &, n € X(q) are vector fields.

2.9. Corollary (see [32]). ForC € Agand R =C o g 1 — q the following conditions
are equivalent.

(1) b’ = 3C is a Lie bracket in o*, hence (g, b, b') is a Lie bialgebra.

(2) bg is a Lie bracket in q.

(3) The Schouten bracket [C, C] € A3qis ad,-invariant.

(4) Bg € (q & A2q*) is g-invariant.

(5) Forall X, Y, Z € q we have

(X, Br(Y. )]+ [Y. BR(Z. X)] + [Z, Br(X.Y)] = 0.

Proof. 1t remains to show that (4) is equivalent to (5). This follows from the identity
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g((ad(U)Br)(Y, Z). X)
= —g([X, BR(Y, )]+ [Y. BR(Z, X)] + [Z. Bp(X. Y)]. U).

which holds forall X, Y, Z, U € q. O

The following simpler equations obviously imply Eq. (5):

(I-mYBE) Br+1ob=0 or Br(X,Y)+1I[X,Y]=0,
(c-mYBE) Br+chb=0 or Bp(X,Y)+c[X,Y]=0,
(YBE) [C.,C1=0 or Br=0,

where I € End(g)" is an ad,-invariant operator on g, and where ¢ is a constant in K. If
K = C (or K = R) without loss we may assume that ¢ = 1 (or ¢ = +£1).

In [9, 3.2], it was shown that any structure of a bialgebra on a semisimple Lie algebra
comes from a solution of (I-mYBE) for some / € End(g)"; and for a simple Lie algebra
from a solution of (¢c-mYBE).

It is also interesting to construct non-skew symmetric solutions of all these equations.
Some class of solutions on a simple complex Lie algebra was constructed in [31].

Note that for an ad,-invariant operator / € End(g)" we have B; = I?obsince [X.Y]=
[IX,Y]=[X,1Y]. Soany skew symmetric ad-invariant operator I gives a solution of the
(mYBE). Non-constant operators of this kind exist on semisimple Lie algebras g if and only
if g has isomorphic simple summands: For example, if g =/lqgi =1 ®... G =9 ® K/
then End(g)® = 1 ®End(IK"), and any skew symmetric matrix A € End(K/) gives a solution
I =1® Aof (mYBE).

To distinguish equations for C € A%q and for R = C o g the equation (1-mYBE) for R
will be called the R-matrix equation, and solutions will be called R-matrices.

2.10. Let (g, b, g) be a metrical Lie-algebra and let R € End(g) be a skew symmetric
endomorphism.

Lemma [9,32]. The following conditions are equivalent:
(1) The endomorphism R satisfies the R-matrix equation Bg + b = 0.
(2) The endomorphisms Ry := R £ 1 satisfy

Ri[R_X,R_Y]=R_[R{X.RyY] forX,Y €q.
(3) Forall i, u € Cand X, Y € q we have

A+ WRIX, YI=0+2)[X, YT+ [(R = M)X, (R — n)Y]
—(R=M[X, (R— Y] — (R — )[(R - 1)X. Y]

(4) The bracket bp(X,Y) =[X,Y]lr =[RX.,Y]+1|X, RY] isa Lie bracket and moreover
both Ry : (q, bgr) — (g, b) are homomorphisms.
2.11. For an endomorphism R : ¢ — g and A € C the space

ar = ker(R — A)N for large N
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is called weight space if it is not 0, and X is called weight of R. We have the following
decomposition of g into a direct sum of all weight spaces:

q= @ 1
reW

where W is the set of all weights.
For A, u € C with A 4+ p # 0 we put

1 +2
0} Aopd = li.
At

(2.1)
Note that (+1) o u = +1.

Lemma [9). Let R be an R-matrix on a metrical Lie algebra (g, g). Then we have:
(1) For weights A, u with » + u # 0 we have

[9n. 6] € Qace and  g(an, g,) = 0.

(2) For A # £1 we have g;,q-,] =0.
(3) The spaces g+ are Lie subalgebras of g, and [a;, a+1] € a1 for » # £1.

2.12. R-matrices and associated Gauss decompositions. We will discuss the relations
between R-matrices on a metrical Lie algebra and its Gauss decompositions.

Definition. A (generalized) Gauss decomposition of a metrical Lie algebra (g, g) is a
decomposition of g

a=qa+ D go D a-

into a sum of subalgebras, where the inner product g is non-degenerate on ¢, and where
a4 and q_ are isotropic subalgebras which are orthogonal to q°.

Note that a Manin decomposition is the special case of a Gauss decomposition with
0
a’ =0.

Proposition. An R-matrix R onametrical Lie algebra (g, g) defines a Gauss decomposition

a=a-® da,.

where (4 are the weight spaces q+1 of R, and where
=P a
Al

is a solvable Lie subalgebra which admits an g-orthogonal automorphism A = ((R +
D1g% o (R — D[a®)~" without fixed point (so AX = X implies X = 0).
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Conversely, let g = g_ @ q° ® g4 be a Gauss decomposition of a metrical Lie algebra
(a, g), where g° admits an orthogonal automorphism A without fixed points. Put Ry =
(A+Do(A—=1D"L Then

R =diag(—1, Rp. 1) : g — q

is an R-matrix.
More generally, any R-matrix R’ on g which induces this Gauss decomposition has the
Jorm

’ =diag(—1+ N_, Ry, 1 + N1) :q — q,

where Ny @ qy — 4 are suitable nilpotent endomorphisms.

Remark that, in fact, the R-matrix equation specifies the form of N . For example, denote
by a', = ker(N+)' € q4. Then

gr=diod o oakodl =0

is a chain of ideals: [gIQ_L. a+] C gxii.

Proof. The first statement follows immediately from Lemma 2.11. The operators R+|q"
are invertible. Note that by putting X = (R — ) luand ¥ = (R — )" v foru, v € g the
equation in Lemma 2.10(2) becomes (R + 1)(R — )7 '[u, v] = [(R4+ D(R — D~ 'u, (R +
D(R — 1)~ 'v]. This shows that A = (R + ) (R — D~!is an automorphism of qC. 1t has
no fixed point. It is easily seen that A is orthogonal if and only if R|g® is skew symmetric.

We now use the fact that a Lie algebra which admits an automorphism without fixed point
1s solvable, see [37].

For the converse, since all arguments above were equivalencies, we see that Ry = (A +
1)(A— D! is a (skew symmetric) R-matrix on qP. Using Lemma 2.10(2) again it follows
by checking cases X, Y € q_, a4, qo that R = diag(—1. Ro, 1) is an R-matrix.

The last statement is obvious. o

2.13. Corollary. Any semisimple R-matrix R on a metrical Lie algebra (q. g) can be
writlen as

R = diag(—1, Ro. 1)

with respect to an appropriate Gauss decomposition ¢ = q_ @ q @ (4, where Ry =
(A + (A — D)7} for a semisimple orthogonal automorphism A of gg without fixed point.

2.14. Corollary. Any R-matrix R on a metrical Lie algebra (g, g) without eigenvalues £1
is of the form

R=(A+Do(A-D"",

where A is an orthogonal automorphism of § without fixed point.
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Note that non-orthogonal automorphisms A give non-skew symmetric solutions R =
(A4 1) o (A — D! of the R-matrix equation,

2.15. Construction of R-matrices via Gauss decompositions. Let (g, g) be a metrical
Lie algebra. Choose a skew-symmetric derivation D of g (for example an inner derivation
ad(Xg) for Xg € q). It defines a decomposition

a=a ®®®g,. whereq® =g

and

w= P w = P o

M(x)=0 or M(a}=0 or
M(2)=0.3(X)>0 M(A)=0.3(3)>0

Lemma. For a complex Lie algebra this decomposition associated to a skew symmetric
derivation D is a Gauss decomposition.

Proof. g((D — i)' X, Y) = g(X. (=D — p)'y). O

We can iterate this construction if there exists non-nilpotent skew symmetric derivations
of go, in particular if gg is not nilpotent. Hence we have:

2.16. Corollary. Let D be a skew symmetric derivation on (g, g).
The decomposition associated to D is trivial, g = o°, if and only if D is nilpotent.
IfOisnot an eigenvalue of D then the associated decomposition is a Manin decomposition

a=a+Dg-.

2.17. Remark. In the special case when the subalgebra g° of a Gauss decomposition is
commutative, then for any skew symmetric endomorphism Rg : ¢° — g° the operator

R = diag(—1, Ro, 1)

is an R-matrix. It is known, [12] or [24, 9.3.10], that the connected component of the
stabilizer of a regular point in the coadjoint representation of any connected Lie group is
commutative. For a metrical Lie algebra the adjoint representation is isomorphic to the
coadjoint one. Hence the Gauss decomposition associated to an inner derivation ad(X) of
a regular semisimple element X € g has q° commutative.

2.18. Construction of R-matrices without eigenvalues £1. Let q be a (nilpotent) Lie
algebra which admits a derivation with positive eigenvalues. For example, let g = €D, ( 6
be a positively graded Lie algebra and let D|g; = ild. Denote by T*q = qr< g* the
semidirect sum of g and the commutative ideal ¢* with the coadjoint action on g*. The
natural pairing ¢ x ¢* — C defines an adr+,-invariant metric g on g. The derivation D
can naturally be extended to a g-skew symmetric derivation D on T*g without eigenvalue
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0. Then A, := exp(t D) is a g-orthogonal automorphism of (7 *q, g) without fixed point.
Hence

R=(A+ DA =D
is an R-matrix without eignevalues £1.

2.19. Proposition [32]. Ler g = a4 @ a— be a Manin decomposition of a metrical Lie
algebra g, and let pry : o — g4 be the corresponding projections. Then R = pr — pr_
is a solution of (1-mYBE) Bp + b = 0.

2.20. Proposition. Let ¢ = q+ @ qo D a— be a Gauss-decomposition of a metrical Lie
algebra g, and let pry. : q — g4 be the orthogonal projections. Then any solution Rg of
the (1-mYBE) on qo has an extension R = c(pry @ Ro & (1 — ¢)pr_) fo a solution of the
(1-mYBE) on q.

This gives us an inductive procedure for the construction of solutions of the (mYBE).

2.21. Theorem. Let (g, g) be a metrical Lie algebra and let R : ¢ — @ be a solution of

2.9, (1-mYBE). Then the following Manin decompositions are isomorphic:

(1) The Manin double g @ q* associated 1o the bialgebra structure b’ = 3(R o g~ from
2.3.

(2) The direct sum § ® § = Qdiag D g With the metric g2((X, Y),(X,Y)) =g(X,X) —
g(¥,Y) for (X,Y) € g @ g where Sdiag = (X, X): X € g} is isomorphic to g,
and where the subalgebra gg = {((R + DX, (R — 1)X): X € g} is isomorphic to
the Lie algebra (q, bg) with bracket bp(X,Y) = [RX, Y]+ [X, RY], which again is
isomorphic to (g%, b'), see 2.8.

Proof. Foran R-matrix R the mapping (R+1, R—1): (g, bg) — g x g is ahomomorphism
of Lie algebras into the direct product by Lemma 2.10, which is injective. Alsoby Lemma 2.8
the mapping g : (g, bg) — (g*, b) is an isomorphism of Lie algebras. The direct sum Lie
algebra g @ g admits a decomposition into Lie subalgebras

a@a={(X.X:Xecgt®{(R+ DY, (R-DY):Y €4},
where

(U, V) =X, X)+((R+ 1Y, (R~ DY),
2X=R(V-U)+V+U, 2¥=U-V,

which are isotropic:
@R+ DY, (R=1DY)=g((R+ DY, (R+ DY) —g(R-DY, (R-1Y)=0

since R is skew symmetric for g. m]
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2.22. Remark. The construction of an R-matrix on a semisimple metrical Lie
algebra (g, g) reduces to the construction of a Manin decomposition ¢ & ¢ = g D g+
of the metrical Lie algebra (g0 & g,g © (—g)) where q_ = 3diag is the diagonal
subalgebra.

3. Notation on Lie groups

3.1. Notation for Lie groups. Let G be a Lie group with Lie algebra ¢ = T,G, multipli-
cation 4 : G x G — G, and for g € G let u,, uf : G — G denote the left and right
translation, u{g, h) = g - h = pg(h) = wh(g).

Let L, R : ¢ — X(G) be the left and right invariant vector field mappings, given by
Ly(g) = T.(ug) - X and Ry = T.(u®) - X, respectively. They are related by Ly (g) =
Rad(g)x (8). Their flows are given by

FIX () = g - exp(tX) = P ¥) (g), FIF* (g) = exp(tX) - & = texpirx)(8)-

Let k!, k" :€ 2'(G, q) be the left and right Maurer—Cartan forms, given by ng &) =
To(pg-1) - & and Kg & =T, (ugfl) - &, respectively. These are the inverses to L, R in the
following sense: L;l = Ké :TeG — gand R;‘ = kg : TgG — g. They are related by Kg =
Ad(g)/cfg :TeG — g and they satisfy the Maurer—Cartan equations de! + %[Kl, 1N =0
and d«” — %[K’, k"N =0.

The (exterior) derivative of the function Ad: G — G L(g) can be expressed by

dAd = Ad-(ado«’) = (ad o k") - Ad,

which follows from d Ad(T pg.X) = %|0Ad(g cexp(tX)) = Ad(g) - ad(Kl(Tug - X)).

3.2. Analysis on Lie groups. Let V be a vector space. For f € C®(G, V) we have
df € 2Y(G; V), a 1-form on G with values in V. We define the left derivative 8§f =
8'f:G — L(g, V) of fby

Sf(x) - X :=df -To(uy) - X =Lxf)x) for xe G, X eaq.

Result [27].

(1) For f € C*(G,R)and g € C*(G,V)we have §(f -g) = f - 8g + 8f ® g, where
weuseq* @ V — L(g, V).

(2) For f € C®(G, V) we have 88f (x)(X, Y) — 88 (x)(Y, X) = 8 (x)([X, ¥1).

(3) Fundamental theorem of calculus: For f € C°(G, V), x € G, X € g we have

1

flx-exp(X)) — f(x) = /5f(x -exp(tX))dr | (X).
0
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(4) Taylor expansion with remainder: For f € C*(G, V), x € G, X € q we have

N

1. .
fexpX))=Y_ FS-’f(x)(X-’)

j=0""
| i N
+/E—]_V:LSN“f(x~exp(zX))dt(XN“).
J !

(5) For f € C°(G, V) and x € G the formal Taylor series

oC
1 .
Tay, f = Z Féff(x) Ra—-R
j=0""

Jactors to a linear functional on the universal enveloping algebra: U(g) — R. If for
A € U(g) we denote by L 4 the associated left invariant differential operator on G, we
have (A, Tay, f) = (L a f)(x)

3.3. Vector fields and differential forms. For f € C°(G, q) we get a smooth vector
field Ly € ¥(G) by Lf(x) := T.(uy) - f(x). This describes an isomorphism L : C*°(G, g)
— X(G).Ifh € C*(G. V) then we have Lyh(x) = dh(Lf(x)) = dh - T,(u,) - f(x) =
8h(x) - f(x), for which we write shortly Lsh = 6h - f.

For ¢ € C*(G. ARg*) we get a k-form L, € QK6 by the prescription (Lg), =
gx)o Ak Ty (@, —1). This gives an isomorphism L : C*(G, Ag) — 2(G).

Result [27].
(1) For f, g € C>*(G, g) we have

[Ly, Lelx) = Lr(t.o

where K (f, g)(x) == [f(x), g(x)]g+38g(x)- f(x) =8/ (x)-g(x), or shorter K(f, g) =
figlag+dg-f—6f-¢&
(2) Forg € C®(G. A q*)and f; € C™(G, g) we have Le(Ly.....Lgy=¢g-(fi..... fo)
(3) For g € C™(G, Akq*) the exterior derivative is given by

d(Lg) = LSAg-i-aﬂogq
where 8% g : G — AKT1q* is given by

k
58N (Xo. ..., X) = 3 (= 1)8g(0) (X)) (Ko ... K. ... Xo),
i=0

and where 3% is the Chevalley differential on ng*.
(4) For g € C™(G.A*g*) and f € C®(G, q) the Lie derivative is given by

EL‘/.Lg = LC‘;og+£‘}g’
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where

(LIO(X1, o Xi) = Y (=1 @)L (), Xil, X1, Ko X,

(L3)(X) (X1, ., Xi) =8 () (fD)(X1, .., Xi)
+ Y (D e@EFEXD X1y KiK.

3.4. Multi vector fields and the Schouten-Nijenhuis bracket. Recall that on a manifold
M the space of multi vector fields I" (AT M) carries the Schouten—Nijenhuis bracket, given
by
(1) [(Xi A AXp VA AT
:Z(‘I)H—j[xiwYj]/\"'i\i"'/\xp/\Y] /\"'?j"'/\Yq-
i.j
See [28] for a presentation along the lines used here. This bracket has the following prop-
erties: Let U € I'(A"TM), V € '(A'TM), W € '(AYTM), and f € C*(M,R).
Then
(U, V]=—~(=D“ =Dy vy,
(U, [V, Wl =[IU, V], W] + (=D« D=y (U, w]),
(U, VAWI=[U, VIAW + (=)= y AU, W],
.Ul =~i(df)U.

where 1(df) is the insertion operator ATM — AT M, the adjoint of df A():
ANT*M — AHIT*M.

For a Lie group G we have an isomorphism L :C>(G, Anq) — I'(ATG) which is
given by L(u), = AT(uy) - u(x), via left trivialization. For u € C*°(G, A"g) we have
Su:G — L(g, A"g) = a* ® A"g, and with respect to the one component in g* we can
consider the insertion operator 7 (8u(x)) : Akq — A*T#q. In more detail: if u = f - U for
f e C™(G,Ryand U € A¥q, then we put 1(8f (x) - UYV = U AT(8f (x))(V).

For the Lie algebra g we also have the algebraic Schouten—Nijenhuis bracket [ , ]%:
APq x Aq — APT4=1q which is given by formula (1), applied to this purely algebraic
situation.

Proposition. Foru € C™(G, A'q) and v € C*(G, AVq) the Schouten—Nijenhuis bracket
is given by

() (L), L)) = L([u, v]* — 1Gu)(®) + (=D D Digvywy).
Proof. This follows from formula (1), applied to
[LCf-Xin--AXp), L(g-YI A A Y]

where f, ¢ € C*(G,R) and X;, ¥; € g, and then by applying 3.3(1). |
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4. Lie-Poisson groups and double groups

4.1. Lie-Poisson groups. A Poisson structure on a Lie group is a tensor field A €
T(A*TG) such that {f, g) := (df A dg, A) defines a Lie bracket on C®(G, R). If we
let A = L(A) for A € C®(G, A2q) in the notation of 3.4, then A is a Poisson structure
if and only if for the Schouten bracket we have [A, A] = 0. By Proposition 3.4 this is
equivalent to

(I (8, 1(g)]" = 2i(3r(g)(A(g)) forallg € G.

A Lie—Poisson group [11] is a Lie group G together with a Poisson structure A € I'(A’T G)
such that the multiplication 1 : G x G — G is a Poisson map, 1.e. the pull back mapping
w*:C®(G,R) - C*(G x G, R) is a homomorphism for the Poisson brackets. This is
equivalent to any of the following properties (2)~(6) for p = 2 (see [21]). Such a 2-vector
field A is also called a Lie—Poisson structure.

Lemma. For A € I'(APTG) the following assertions (2)—(6) are equivalent:
(2) A is multiplicative in the sense that

A(gh) = APT (ug) - A(h) + APT () - A(g) forallg,h € G.

(3) (Assuming that G is connected) A(e) = 0 and the Schouten bracket L1, A = [Lx, A]
is left invariant for each left invariant vector field L x on G.

(4) (Assuming that G is connected) A(e) = 0 and the Schouten bracket Lr, A = [Rx, A]
is right invariant for each right invariant vector field Ry on G.

(5) Ifwe let A = L(X) for A € C™(G, APy) in the notation of 3.4, then

Agh) = APAd(h™") - A(g) + A(h) forall g, heG.

This has the following meaning: Consider the right semidirect product G << AP g with
multiplication (x, U) - (y, V) = (xy, Ad(y_l)U + V). Then the above equation holds
if and only if x — (x, A(x)) is a homomorphism of Lie groups.
(6) A:G — APTG is a homomorphism of Lie groups, where L : Go< APq = APTG. |
A Poisson structure A on G is a Lie—Poisson structure if and only if these conditions (2)—(6)
are satisfied for p = 2.

Proof. For the proof of the equivalence of conditions (2)—(4) see [21], the equivalence to
(5) and (6) is obvious.
We prove the last assertion. It follows from

W fin"gloxc(x, y) = ({d(fop) nd(gop), Ax) @ A(Y))
= (df (xy) Adg(xy)) - A2 Tt (A(X), AY))
= (df (xy) Adg(xy)) - ATy () + T (1)) - (A(x), A(Y))
= (df (xy) Adg(xy)) - (N Ty (1e) AQY) + A Te(u) A(x))
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compared with
(W™ f glo)(x. y) = (df Adg) - Alxy). DO

Note that if Ay:G — AP'TG and A2: G — AP2T G are homomorphisms of groups
with 7 o A; = Idg, then their Schouten bracket [A[, A2]: G — APITP2=IT G has the
same property. This follows from [21] and the equivalence to (6) from above.

4.2. Theorem [11]. If (G, A) is a Lie—Poisson group with Lie algebra q then by b’ : ¢ —
Al we get a Lie bialgebra structure on g, where b’ (X) = (L1, A)(e) = A (e) X, where L
denotes the Lie derivative.

If (q, b, b") is a Lie bialgebra and G is a simply connected Lie group associated 1o g,
then the cocycle b’ integrates to a unique Lie—Poisson structure A € I'( A TG) on G.

Proof. See [11,21] for other proofs. By conditions 4.1(5) and (6) any multiplicative 2-
vector-field A is a homomorphism of Lie-groups

A 2
G —— ATG

(Id, %)

— 5 Go< A%g
and the induced Lie algebra homomorphism then is

T.(A)- X =(X, L, Ale))
= (X,8x(e) - X) (by Proposition 3.4(2))
= (Idg, b')(X),

and conversely any 2-cocycle b’ : g — AZ%g integrates to a Lie group homomorphism if G
is supposed to be simply connected.

It remains to show that " : A2q* — o~ satisfies the Jacobi identity if and only if 4.1(1)
holds. Let us take the left derivative § at ¢ of Eq. 4.1(1) and get

0=2[8x(e), Me)]® — 21 (8%A(e)A(e) — 21(8A(e))SA(e)
=0-—0—[8r(e), SA(e)INR,

so that the Nijenhuis—Richardson bracket of b’ = §A(e): AZq* — g* with itself vanishes.
This just means that #’ is a Lie bracket on g*, see [30].

For the converse note first that if A: G — A’TG is a homomorphism of Lie groups
then also the Schouten bracket [A, A]: G — A3TG is a homomorphism of Lie groups.
But if &' = 8A(e) is a Lie bracket on g* then the computation above shows that §([A, A]" —
21(8A)A)(e) = Oso that the associated Lie algebra homomorphism is just (Id, 0) : ¢ — ge<
Alg. But then [A, A] = 0. O
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4.3. Affine poisson structures. An affine Poisson structure on a Lie group G is a Poisson
structure A such that A; is a Lie-Poisson structure or equivalently A, is a Lie—Poisson
structure, where

(N A(g)=A(g) —T(ug)Ale), Ar=A— Ly,
2 Ar(g)=A(g) —T(uf)A(e), A=A~ Rue.

For a Poisson structure A we also have

(la)  Ar=L(h), (g = Ar(g) —Ale),
(2a) A, =L(), A(g) = A(g) — Ad(g™Hr(e),

and A is an affine Poisson structure if and only if

(3)  Agh) = Ad(h D) + A(h) — Ad(h)ale).

4.4. Lie groups with exact Lie bialgebras. Let & be a Lie group with Lie algebra q.
Suppose we have a solution C € A?g of the (mYBE), so that »’ = 3C is a Lie bialgebra
structure for (g, a*). Then we can write down explicitly the Lie—Poisson structure on any
(even not connected) Lie group with Lie algebra g, as follows.

We consider Ay : G — A>T G givenby A4 (g) := T (ty)C £ T (u¥)C. Then obviously
A_ 1s multiplicative and A is affine with (A4); = A_ and (Ay), = —A_. Inthe notation
of (4.1) we have A4 (g) = C + Ad(g~1)C, and

b(X) =8ri(e)X = +(8(A*(Ad o Inv)) () X)C = Fad(X)C = F(9pC)(X).

and since C satisfies (mYBE), the tensor fields A4 are Poisson structures.

4.5. Manin decompositions and Lie-Poisson structures. Let ¢ = g4 @ g be a Manin
decomposition of a metrical Lie algebra g, and let pry :q¢ — g+ be the corresponding
projections. Then by 2.19 the operator R = pr_ —pr_ is a solution of (1-mYBE) Bg +b =
0.

So by (4.4) aManin decomposition defines a canonically associated Lie—Poisson structure
on each (even not connected) Lie group G with Lie algebra g, as follows: Let C = R og’l €
Ag be the associated exact bialgebra structure, and consider A+ : G — A’T'G given by

(D Au@) =T C T UH)C.

Then in the notation of (4.1) we have 14 (g) = C + Ad(g~")C, and b (X)) =68r1(e)X =
+AZ(S(Adolnv)(e) X)C = Fad(X)C = F(3,C)(X). The tensor field A_ is areal analytic
Lie—Poisson structure and A is a real analytic affine Poisson structure with (A4); = A_
and (A4+), = —A_. Since A4 (¢) = C is non-degenerate, the affine Poisson structure A
is non-degenerate on an open subset of G. If G is connected, this open subset is also dense
since the real analytic Poisson structure cannot be degenerate on an open subset.

We shall investigate this kind of structure in much more details below.
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4.6. Gauss decompositions and Lie-Poisson structures. Let G be a Lie group with a
metrical Lie algebra (g, g). From 2.20 we know that any solution R of the R-matrix equation
can be described as follows. There is a Gauss decomposition ¢ = g+ @ qo © g— with g+
isotropic and dual to each other, and with g non-degenerate on go. Let pro:q — g+ 0 be
the orthogonal projections. Then R is of the following form:

(hH R =pr, & (Roopry) @ (—pr_).

where Ry is a solution of (1-mYBE) on ¢g without eigenvalues 1 or —1 (without fixed
points).

Let X; be a basis of g with ¥; the dual basis of ¢, and let Z; be an orthonormal basis of
q0» all with respect to the inner product gong = g4 D go D u—. Let Ry(Z;) = Zk Rj/? Zy =

> C ki 7, be the (skew symmetric) matrix representation of Ry with respect to the basis
Z;. Then

pry(U) = ZX,-.g(U, Yi),

i

proU)=Y_2;.8(U, Zp),
J

pr (U)=) Yi.g(U, Xy,

so that

2 R=pr—p_+Roopr) =Y Xin¥i+) Rz ®Z oy
i jk

C:=Rog™! =Zx,~ AYi+ZC-iijAZk.
j<k

Let us consider A4 : G — A’TG given by
(3) Ax(g) = T(ug)C T (u*)C.
Then in the notation of (4.1) we have AL(g) = C £ Ad(g’l)C, and

b (X) = 8rx(e)X = £(8(Ad o Inv)(e)X)C = Fad(X)C = F(3,C)(X).
Since R was a solution of (1-YBE) the tensor field A _ is areal analytic Lie~Poisson structure
and A is a real analytic affine Poisson structure with (A4); = A_ and (Ay), = —A_.
Since A4 (e) = C is non-degenerate, the affine Poisson structure A is non-degenerate on

an open subset of G. If G is connected this open subset is also dense since the real analytic
Poisson structure cannot be degenerate on an open subset.
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5. Explicit formulas for Poisson structures on double Lie groups

5.1. The setting. It turns out that in the situation of 4.5 one can get very useful explicit
formulae. Let us explain this setting once more, which will be used for the rest of this paper.

Let G be any Lie group with a metrical Lie algebra (g, ) and suppose that it admits a
Manin decomposition (g = g4 ®q_, y). Letpry : ¢ — g+ be the corresponding projections.
By 2.20 the operator R = pr, — pr_ is a solution of (1-mYBE) Bg + b = 0.

Simplified notation. In order to compactify the notation we will use the following short-
hand, in the rest of this paper: For U € &)” g etc. and for g € G we let

p p
gU=2g U=QQTu)U. Ug=U-g=Q)TusU.

Let X; be a basis of g, with ¥; the dual basis of g with respect to the inner product y
ong =gy @ g_. Then

pr(2)=) y(Z.Y)-Xi= (ZY,- ® x,-) y(2),
pro(Z)=) y(Z X))V = <Z X ® Y,-> y(2),

so that

pr+:<ZYi®Xi)oy:C+O}/,

i

pr_:(ZX,’@Y,')OyZCoy,

!

where
C+=ZY:'®X,', C—=in®)’f.
i i

Then we have

() R=pry—pr_= (}:Y,- Ax,-> 32
i
C=Roy '=Ci—C_.=) YirnX,.
Then we consider A+ : G — A2T G qiven by (note the factor %)

2)  Ax(g) = 3(gC £ Cy).

Then in the notation of (4.1) we have A 1 (g) = %(C:i:Ad(g_l)C),andb/i(X) =8ir(e)X =
+1 A2 (8(Ad o Inv)(e)X)C = Fiad(X)C = F3(@C)(X). The tensor field A is a
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real analytic Lie—Poisson structure and A is a real analytic affine Poisson structure with
(Ay) = A_and (Ay), = —A_. Since Ay(e) = C is non-degenerate, the affine Poisson
structure A is non-degenerate on an open subset of G. If G is connected, this open subset
is also dense since the real analytic Poisson structure cannot vanish on an open subset.

5.2. Lemma. In the setting of 5.1 we have:

(1) A+(a)=aC+—C_a=C+a—aC,
=) (@¥;®aX; - Xja®Y;a) = ) (Y;a ® X;a —aX; ® a¥))
: 4

1

) A_(@)y=aCy —-Cyra=C_a—aC_
= Z(aYi QaX; — Yia® X;a) = Z(X,-a ® Yia —aX; ® aY;)
i i

Proof. The tensor fields do not look skew symmetric but observe that
(3) aC+ +aC_ = C+a +C_a.

This is equivalentto C+ + C_ = ®2 Ad(a~")(C4 + C_) which, when composed with y,
in L(q, g) justsays that Idy = pr, +pr_ = Ad(a”l)IdgAd(a). Using (5) we have

Ay(@)=$(aC + Ca) = 1(aCy —aC_ + Cya — C_a)
=Cya—aC_=aCy —C_aq,

A_(a)=13(aC — Ca) = J(aCy —aC_ — Cira+ C-a)
=aCy —Cra=C_a—-aC_. a

5.3. The subgroups and the Poisson structures. In the setting of 5.1 we consider now
the Lie subgroups G+ C G corresponding to the isotropic Lie subalgebras g+, and we
consider the mappings

¢0: G xG_ = G, (g, u)y:=g-ucgG,
v .G x Gy — G, Y, h)y:=v-hedG.

Both are diffeomorphisms on open neighborhoods of (e, ¢). We will use g, « and v, h as
local ‘coordinates’ near e. So, we have, at least locally in an open neighborhood U of ¢ in
G, well-defined projections pl+, pr:GDOU — Gyand p;.p;:G DU — G_ which
play the role of momentum mappings:

pl+(g~u):=g, p,+(v~h):=heG+,
pw-h):=v, p (g u=ueCG_.

When ¢ (or equivalently ) is a global diffeomorphism (this is consistent for simply con-
nected G with completeness of the the dressing vector fields; in these cases we will call G
a complete double group) then the mappings pfr are globally defined.
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Remark. If the subgroup G is compact then the double group G is complete. Similarly
for G_.

Indeed, there exists a G-invariant Riemann metric on the homogeneous space G/G .
Then G acts on G/ G ;. by isometries locally transitively, hence transitively. This means that
G = G4+ - G_ globally and that G4+ N G _ is finite.

5.4. Theorem. [n the setting above, the following tensor fields are Lie—Poisson structures
on the group Gy and G_, respectively, corresponding to the Lie bialgebra structures on
a+ and q_ induced from the Manin decomposition:
() A% (9)=g((d, ® Ad° (g pr AdP (§))C_) € A*T G4

=g(~(Ad% (g7 @ pryAdC (g™ NC)

=" gX; ®pr, (Ad°()Y)g

1

==Y Xig Agpr(Ad(g Y,

2) A% () =u(dy A Ad (u NHpr_Ad% m))Cy) € A*TG_
=u(—(Ad°(u )y @pr_Ad(u")Cy)
= Z uY; @ pr_(Ad (1) X;)u

1

= Z Yiu @ upr_(AdCu X;).

1

The following tensor fields are non-degenerate Poisson structures on the groups G x G_
and G- x G, respectively.

3 AL =A%) + A% ) + ) ViungX; € TGy x G-,

{

@ AV, by =—A%(h) — A%~ () + Z VY A X;h € A°T(G_ x G1).

Moreover they are related to the affine Poisson structures on G, i.e., we have
(5)  ATe-AY =A;o0p,  ATY-AY =40y

The following tensor fields are Lie—Poisson structures on the groups G xG_and G_x G,
respectively:

© A% (g u)=—A% (@) + A% () € A°T(G4 x G_),
7 AV, ) =—A% () + A% (v) € AXT(G_ x G3).

Moreover they are related to the Lie—Poisson structure on G which corresponds to C, i.e.
we have

8) Te A =A_ocp, Ty -AY =A_ovy.
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Proof. Using 5.2(1) we have
As(guw) =) (gu¥; ® guX; — Xigu ® Yigu)

3

= g(AdW)Y; ® Adw)X; — Ad(g "X, ® Ad(g™")Yi)u

li

= Z g(AdW)Y; @ pr_(Ad(w)X;) + Ad(w)Y; ® pr (Ad(w)X;)

{
—Ad(g HX; ® pr_(Ad(g HY) — Ad(g™HX; ® pr, (Ad(g™ ) Y))u.
In L(g, a) we have (compare with 5.1(1))

(Z Adw)Y; ® pr+<Ad<u>x,->) oy

i

=pr, o Ad(u) opr o Ad(u‘l)

= pr, o Ad(u) o (Idg — pr_) o Ad(u™ ")

=pr, —pr, o Ad(u) opr_ o Ad(u™ =pr, — 0,

for pr, o Ad(u) o pr_ = O since u € G_. Thus we get

1

D AdWY; @ pry(AdX) =) Y ® X;

and similarly we obtain
Y AdeTHXi @pr_(Ad(g DY) =) Xi® Y],

14

]

so that
Ap(gu)=g (Z uY; ® pr_(Ad(u)X,)u) + g (Z Yi A X,-)

H

- (Z Xig ®gpr+(Ad<g“>Y,->) u

=Tig.u)® (AGA (u) + Ag, (g) + Z Yiun gX,-) ,
i

which proves (3) and part of (5) In a similar way one proves (4) and the other part of (5).
Next we check that the two expressions for A%+ in (1) are the same. We have to show

that the following expression vanishes:

Y X ®pry(Ad(@)Y)g + Y _ Xig ® gpro(Ad(g HY)

> Ad(e)X; ®pro(Ad(gHYi)

i

¢ (Z X; ® Ad(g™pr, (Ad(9)Y)) +
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The term in brackets, composed with y from the right, is the following endomorphism of
q:

Ad(g™"pr, Ad(g)pr_ + proAd(gpr_Ad(g)
= Ad(g " "pr, Ad(g)(Id — pr,) + pr, Ad(g~H)(Id — pr,)Ad(g)
= Ad(g~")pr, Ad(g) — Ad(g Dpr,Ad(g)pry + pry. — proAd(g~pr Ad(g)
= Ad(g~Dpr, Ad(g) — pry +pry. — Ad(g~)pr, Ad(g) =0,
since Ad(g gy C gy and pr.|lay = Id. In the same way one shows that the the two
expressions for AS-in (2) coincide, and similar computations show that all expressions in
(1) and (2) are indeed skew-symmetric (which is clear from the beginning).

Next we show that A®+ is multiplicative. We have the following chain of equivalent
assertions:

AS+(gh) = g A%+ (h) + A+ (g)h,
(gh) 'A%+ (gh) = h ' AC+(h) + h "¢  AC+ (g)h,
Y Xi @ Ad(gh)”'pr (Ad(gh)Y:)

t

= Z X; ® Ad(h~pr, (Ad(W)Y)

1

+ Y Ad(hT)X; ® Ad(gh)'pri (Ad(2)Y)).

!
Ad(gh) 'pr, Ad(gh)pr_
= Ad(h‘l)pr+Ad(h)pr_ + Ad(gh)—]pr+Ad(g)pr;Ad(h).

Both sides of the last equation vanish when applied to elements of g, and on elements of
g— we may delete the rightmost pr_, so this is equivalent to

proAd(gh) = Ad(g)pr  Ad(h) + pr  Ad(g)pr_Ad(h)
= Ad(g)pr Ad(h) + pr Ad(g)(Id — pr YAd(h)
= Ad(g)pr, Ad(h) + pr Ad(gh) — pr, Ad(g)pr, Ad(h),

which is true since Ad(g)(a+) C a4.
Finally we show that the group homomorphism A%+ : G, — A2T G is associated to

the bialgebra structure given by the Lie bracket on q_ £ (a+)*. For that we consider, as
explained in 4.1 and in the proof of 4.2:

© A% =g 'A% () =) X; @ Ad(g "pr, (Ad(e)Y)),

t

519+ ()X =0+ Y X; ® pr, (ad(X) ),

1

YA (X, Y ® ¥)
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=Y v X, YOy (pryad(X)Y;, ¥)

!
= y(pryad(X)Y;, ¥) = y (ad(X)Yi, pr Y1)
=y(X, Ykl pr_Y)) = y (X, [V, 11D,

which we had to prove. Let us now investigate the Lie—Poisson structure on G. From 5.2(2)
we have

A_(gu) = Z(guY,- RguX; —Yigu® X;gu)

1

=Y g(AdW)Y; ® Adw)X; — Ad(g™")Y; ® Ad(g™")X;)u

13

= g(AdW)Y; ® pr_(AdW)X:) + Ad)Y; ® pry AdW)X;

14

—pr_(Ad(g™HY;) ® Ad(g HX; — pr, (Ad(g™HY)) ® Ad(g™ ) X, )u.

In L(g, ¢) we again have

<Z Ad(w)Y; ® pr+Ad(u)Xi) oy

1
= pr, Ad(u)pr Adu™")
= pr Ad(u)(Id — pr_)Ad(u~") = pr, — 0,

- (Z pr_(Ad(g™"Y) ®Ad(g“>x,-) oy

= —Ad(g"")pr, Ad(g)pr*
—Ad(g"pr Ad(g)pry = ~pr,,

~ (Z pry (Ad(g™Y)) ®Ad(g“>x,-) oy
= —Ad(g""pr Ad(g)pr}

= — (Z X ® Ad(g'l)pr+(Ad(g)Yi)) ov.

i
Thus we get

A_(gw) =y g(Ad@)Y; ® pr_(Adw)X;) — X; ® Ad(g~")pr, (Ad(g)¥;)u

1

=g <Z uY; ® pr_(Ad(u)X,-)u) - (Z 8Xi ®pr+(Ad(g)Yi)g) u

t

=g A% () — A% (@u = Ty e(AY~ () — A%+ (g)),
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which proves (6) and (8). All remaining statements can be proved analogously, or are
obvious. =

5.5 Corollary. In the situation of 5.1 we have:
(1) The Poisson structure A(j_ on the direct product group G ip x G _ is affine with

(A (g 1) = A%+ () + A%~ (),
(A9 (g. Ll)—AGWg)—I—AG*(M)—I—ZYu/\X,g—ZuY negXi,

i i
where the vector fields g — gX;, X;g are left and right invariant with respect to the
opposite group structure on G .
(2) Moreover;, the Lie—Poisson structure (A )r on GJr x G_ is the dual Lie Poisson
structure to A_ on G, i.e., it defines the Lie algebra structure on .
(3) The Poisson structure Af on the direct product group G x G is affine with

(AY), (v, h) = =A%+ (h) — A%~ (v),
(A Y(v, h)y=—A%(h) — A9 (v)—l—ZYv/\Xh—ZvY AhX;.

i i
where the vector fields g — vY;, Yiv are left and right invariant with respect to the
opposite group structure on G _.
(4) (G4, —A%+) and (G_, A®-) are Lie—Poisson subgroups of the Lie—Poisson group
(G, AL).
(5) The (local) projections from 5.3

plopf (G AL = (Gy =A%), plip (G AL > (G A9,

are Poisson mappings.
(6) The (local) projections from 5.3

pi (G AL) > (G, AT, Pl (G, AL) = (Gy, —AYT),
p; (G, Ay) = (G—, AS7), pr (G AL = (G-, =A%)

are Poisson mappings.

(7) The mapping (G 4. AS+)x (G, Ay) — (G, Ay) givenby (g, a) — gaisaleft Poisson
action of a Lie—Poisson group.

(8) The mapping (G, Ay) x (G-, AS~) = (G, A4) given by (a,u) — ga is a right
Poisson action of a Lie—Poisson group.

(9) The Lie~Poisson group dual to (G, A_) is G4 x G with the Lie—Poisson structure

~(AY).

Proof. On the direct product group Gip x G _ the vector field ¢ +— X; g is right invariant,
SO expressions in (1) follows directly from 4.3 and the form 5.4(3) of A‘p The Poisson
structure (A )r is then visibly a Lie—Poisson structure on G+ x G_, SO (A+), is affine.
The proof of (3) is similar.
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For (2) we consider, as explained in 4.1 and in the proof of 4.2, see also the proof of
5.4(9):

22 (g w) =29+ (g) + 20— w)
+ ZAd(u“)Y,- AXi =Y AAdETHX;,

818 (e, e)(X, Y)—SAG+(e)X+8AG (e)Y
=YY AXi Y Y ALK Xy,

=b" D™ =D [V Vil AXi £ ) Vi ALK Xy,
i

i

where X € q4 and Y € g_. If we take this into the inner product with elements ¥} ® Y,
Yi ® X, etc., use 5.4(9) and proceed as there, the result follows.

Conditions (5)—(8) follow from the formulae for A, and A_ in the ‘coordinates’ (g. u)
and (v, h), and from the fact that A+ and AC- are multiplicative.

Condition (9) is analogous to (2). O

5.6. Let us note finally that the decompositions 5.4(3) and (4) of the Poisson structure A,
on G = G4 x G_ are surprisingly rigid.

Theorem. Suppose that a Poisson structure A on a manifold H x K which is a product of
two Lie groups of equal dimension admits a decomposition

Alh k) = AM () + AR (k) + D" ¥ )y A X[(h) € ATy (H x K),

i

where A" and AX are tensor fields on H and K, respectively, and where Xf are the left
invariant vector fields and Y the right invariant vector fields on H and K, with respect to
bases X; of hy and Y; of £.

Then A and AX are affine Poisson structures on H and K, respectively, and (H, A™),
(K, AX) is a dual pair of Lie—Poisson groups and A represents the ‘symplectic’ Poisson
tensor on the corresponding group double.

Proof. The vanishing Schouten bracket [A, A] yields

0 = [A", AH) € '(A*TH)
+ (4K, A%) e '(A*TK)
+2ZY' ALXE AHY - Z[Y,,Y] AXIAX, eX(K)®TM(ATH)

—2Z[Y,.’, AR A X4 Z YIAYI ALK XY € T(APTK) @ X(H).

if
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Each of the lines vanishes by itself: The first two lines then say that AH and AX are Poisson
tensors on H and K, respectively. Using the structure constants cj; of § with respect to the
basis X;, and d,;, i of f with respect to ¥;, the last two lines can be rewritten as

ZY,; ALX, AH] = Zd”Y’ AX|AXS
m

ijm

1 .
Z[ m,AK]/\an=§ZY,.’/\Y;/\ci,£X£,,,

ijm
or by
1 g )
(X}, A= Ly AH = 5 > di XI A XL e Lin?),
ij

1 iy
[vr, AK]= Ly A¥ = 5 D ¥ AY] € R(A).
ij

These are just conditions (3) and (4) of 4.1 without the further assumption that Afe)y=0
or A¥ (e) = 0, so we can conclude from there that A" and AX are affine Poisson structures,
respectively. For their associated Lie—Poisson structures

(A, () = A% (h) — AP (e,  (AK) (k) = AX () — kAKX (e)

we get
Ly (A, =L AT = Z di X! A XL

1 i j r r
Ly, (A% =Ly, 4% = 5 Zci,f,yl. AY],
ij
so that the Lie—Poisson structure (A7), corresponds to the cobracket
1 g
by:h— A%, by(Xm) = 3 > dl Xi A X,
ij

and the Lie—Poisson bracket (AX), corresponds to the cobracket

1 .
bl E— A, bj(Ym) = EZC;,{Y,» AY.

Hence bg is dual to the Lie bracket on f, and b} is dual to the Lie bracket on b, with respect
to the pairing y (X;, ¥;) = §;;. O
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6. Dressing actions and symplectic leaves

6.1. Lie algebroids. On every Poisson manifold (M, A) the Poisson tensor defines the
mapping T*M 3 o +— af := i, A € TM, and a Lie bracket on the space of 1-forms
defined by

(1) {a, B} = ipdf — igsda +diale A B).
The mapping ( )*: (M) — X(M) is then a homomorphism of Lie algebras,
2 e B =%, B

this is also expressed by saying that A turns 7* M into a Lie algebroid with anchor mapping

(-

6.2. Thedressing action. Affine Poisson structures on a Lie group G may be characterized
by the property that the left invariant 1-forms (or equivalently the right invariant ones) are
closed with respect to the bracket 6.1(1).

Consequently, for an affine Poisson structure A on G the mappings

gt = X(G), A X)) a) == —(aX)?,
pigt = X(G),  p(X)a) = (Xa)*

are an anti-homomorphism and homomorphism of the Lie algebras g} and gJ, respectively,
where gF is the dual space g* with the Lie bracket corresponding to A,, and where g
corresponds to A;. The fields A(X) are called lefr dressing vector fields on G, and the
p(X) are called right dressing vector fields. They may be considered as infinitesimal ac-
tions of the corresponding dual groups. We have seen such actions already in 5.5(4) and
(5). If we can integrate this infinitesimal action to a global one, called the dressing ac-
tion (if the dressing fields are complete), the affine Poisson group (G, A) will be called
complete.

In any case, the left (or right) dressing vector fields generate the characteristic distribution
of A, whose leaves are precisely the symplectic leaves of the Poisson structure A.

One believes that dressing actions describe ‘hidden symmetries’ of physical systems.

6.3. Theorem. Let G be a Lie group with a metrical Lie algebra (q, y) which admits a
Manin decomposition ¢ = a1 @ a_. In the setting of 5.1, the dressing vector fields for the
affine Poisson structures Ay and A_ on G are the following:

(1 i (Xi)(a) = —pr, (Ad(a)X;)a, p+(Xi)(a) = apr, (Ad(@)~' X)),
Ay (Yi)@) = pr_(Ad(@)Y)a, p+(Yi)(a) = —apr_(Ad@)~'Yy).
) A_(Xi)(a) = pr_(Ad(a)Xi)a, p—(X)(a) = —apr_(Ad(a)~' X)),

A_(Yi)(a) = —pr (Ad(a)Y))a, p-(Yp)(a) =apr (Ad@)~'Y;).
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Proof. For instance, by 5.2,

p+(X)(@) =1(y (Xia)) Ay (@) = i(y(Xia)) ) _(Y;a ® X;a —aX; ® a¥;)
J
=Y (v(Xia. Y;a)X;a — y(X;a.aX;)aY;)
J
=X;a—apr_(AdlaHX; = a(Ad(a™HX; — pr_(Ad(a " H X))
=a(pr (Ad@ HX;). O

6.4. Corollary. The Poisson tensors A+ may be written in the following alternative form:

() Ay(@ =) (@Y @pry(Ad@)X;)a — aX; ® pr_(Ad(@)¥:)a)

i

= Z(Y,-a ®a pr+(Ad(a_1)Xi) —Xia® apr_(Ad(a")Yi)).
(2) A_(a)=— Z(aXi @ pri(Ad(@)Y)a —aY; @ pr_(Ad(a)X;)a)

=~ (Xia®apr_(Ad@ )Y)) - Yia ® apr (Ad(@ HX)).

{

Proof. From the definition of ( )*: T*G — T G we have

Ay =) (—a¥; ® (X)) —aX; ® Ay (¥), ete. O

H

6.5. Corollary [1].
(1) The characteristic distributions St of the Poisson structures A+ may be described as
Jollows:

Si(a)y=a(pr,(Ad(a™ay) +pr_Ad@ Ha-)
= (pr, (Ad(a)ay) + pr_Ad(a)g-)a,

S_(a)=a(pr_(Ad(@ "gs) + pryAd@ a-)
= (pr_(Ad(@)g+) + pry Ad(a)g)a.

In particular, S1(a) + S_(a) = T,G.

(2) The symplectic leaves of S+ are the connected components of the intersections of orbits
GraG_NG_-aGy, and the symplectic leaves of S— are the connected components
of the intersections of orbits G_a G_ NGy aGy, fora € G.

(3) The Poisson structure A is non-degenerate precisely on the set GL.G_NG_G4; so
it is globally non-degenerate if and only if G+ G_ = G. In particular, if (G, A}) is
complete 6.2 then Ay is non-degenerate.

Proof. (1) follows directly from Theorem (6.3) since the dressing vector fields generate the
characteristic distribution. To prove (2) observe that the tangent space to the intersection of
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obits GyaG_NG_aGiratae Gis

(g+a +ag-)N(g_a +aqg+)
= a((Ad(a s +a-) N (Ad@@ Ha- +a4))
= a(pry(Ad(@a "ay) + pr_(Ad(a™Hg-)) = Si(a).

so that the connected components of G4 a G- NG _ a G4 are integral submanifolds of Sy.
For S_. the proof is similar.

The intersection GG _ N G_.G is an open and dense subset of G consisting, by (2),
of points where A is non-degenerate. If the orbit GLaG_ meets G G_ N G_G then
it 1s contained in G+ G_, so G G_ N G_G consists of all points where A, is non-
degenerate. a

6.6. On M : = G4 G_ NG_G the Poisson structure A is symplectic, so let us describe
the associated symplectic form w = (A4 )~ in terms of the coordinates (g. 1) and (v, h)
introduced in (5.3). We will start by describing the dressing vector fields on the groups
(G4 x G_, Aﬁ) and (G_ x G4, Aﬁ). In order to avoid problems of always having to
tell which multiplication is opposite, and to use a notation which differs from that used
in Theorem 6.3 we will write (1 X)* for the dressing vector field corresponding to the left
invariant 1-form on G x G* represented by n(g, u) = uX in the obvious way:

y X, gX; +u¥)) = y(uX.u¥y) = y(X.Y)), etc.

After easy calculations we get from 5.4(3) and (4):

Theorem. In the situations above, the dressing vector fields are given by:

(D On (Gy x G-, A% (g.u)):
(Xiu)* = gX; —upr_(Ad(u"HX)).
(Y;g)* = —gpr, (Ad(g~HY;) — pr_(Ad(g~"HYi)u.
X)) = pr_(Adw)X)u + g pr, (Ad(w) X;)u,
(gY)F =pr (Ad(g)Y)g — Yiu.

2)  On(G_x Gy, AL(v. h)):
(WX)* = X;h — pr_(Ad()X;)v,
(hY))F = —pr, (Ad(W)Y)h — vpr_(Ad(h)Y)),
(X;v)* = vpr_(Ad(w™")X;) + pry (Ad(v™ ) X)h,
(Yih)F = hpr (Ad(h™)Y;) — vY;.

Denote now (X;u)" = ¢ (X)) € X(G1G_), etc., and (vX;)" = Y (X;u)* € ¥(G_G),

etc., and call them the undressing vector fields. They are given at the pointa = gu = vh €
M=G,G_NG_G4 CGby
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3) (Xiu)" = apry(Adw X)), (Yig)" = —Yia,

uX;))" =aX;, (gY)" = —pr_(Ad(g)Y)a,
(wX;)" =pr (Ad(w)X;)a (hY)" = —aY;
(X;v)" = Xia, (Yim)" = —apr_(Ad(h~HY)).

Proof. We only prove (3), and only one example:

(Xiw)" = u(Xi)* = o (gX; —upr_(Ad™1)X))
=gX;u — gupr_(Adu~")X;)
= gu(Ad(u™"X; — pr_(Ad(uHX;))
=apr,(Adw HX;). O

6.7. Corollary. At pointsa = gu =vhe M = G.G_NG_G4 C G the affine Poisson
structure is given by

(1) Ag@) =) (X)) ® hY)" + (Xiv)" & (¥ig)")

3

=Y (X" ® (g¥)" = (Vi) ® (vX)").

The associated symplectic structure w may be written as

) wa=) (WX) @ (hY) + (Xiv) ® (Y;g))

1

=Y (X)) ® (g¥)) — (Yih) ® (X)),

where we identify the 1-forms uX;, etc., on G X G_ and the 1-forms hY;, etc., on G_ X G 4
with 1-forms on M via the diffeomorphisms ¢ and . Formally correct we should write
(@ H*uXy), etc.

Proof. The form (1) of A (a) can be checked by easy calculations. But (1) shows that we
can construct A (a) from (uX;)" = I(uX;) A4, etc., thus we can construct w, = A+(a)‘l
in the same way from the corresponding 1-forms u X;. O

6.8. Remark. We can write 6.7(2) in a more ‘coordinate free’ form:

1) o=y@h ®ui)+r6 *ulb)

=3O8 "u )+ v g " 05,
where ﬂ(é, = (uX;) ® Y; is the left Maurer—Cartan form on G_ pushed via ¢ to M =
G;G_NG_G4 C G, and where 0g7 = (X;v) ® ¥; is the right Maurer—Cartan form on
G _ pushed via ¥ to M, etc. This expression (1) should be compared with the corresponding
formula in [1], or with formula 2.3(3) in [2] for the case of a cotangent bundle 7*G 4. So
6.7 is a generalization of these results in [2] to the case of a double group.
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6.9. Recall now from (5.3) the projections p,+, pY:G>U — G and p.p; G D
U — G- which we get from inverting ¢ and v, respectively. For @ € G and for b near e
in G we then define

(1) M@ = pf@b~'aHa, 2, (@)= p, (@b 'a Na,
pb+(a) = apf(ab'la_l), p, (a) == apf(ab_la").

Theorem. The mappings A+ and A~ define left (local) actions of G on G, and p™ and p~
define right (local actions), i.e.,

Q) A O0p@) =@, A Agp@) =),
Py (ph@) = pi@.  p, (0 (@) = py, (@)

The subgroup G is invariant under M and p* while G _ is invariant under .~ and p~.
Moreover, the pairs ™, A=, and p™*, p~ commute:

3) A Gp@) =4, Gf @) = pfa®)ba"hab !,
pif (0, (@) = py (o (@) = B 'apf (@) 'ba™).
Proof. (2) Assume a)ta ™t = vhforve G_andh € G 4 as usual, so that we have
Af(a) =ha = v 'a(@®')~". Then
a (@) = pfhab'a™ h™YYha = pF(hab™'a™Va
=prwta)y b 'a Na
= p;(abb)'a Ha = 1}, (a).
For the other actions, the proofs are similar.
(3) We shall prove only the first part. Put a(b’) "'a™' = guforg e G andu € G_, so
that A, (a) = ua = g la®)~". Then
A (@) = A (a) = pf(uab™' (ua) Mua
=pF @b "b'a " g)g a(p)!
=pHab 'WaHay' = pTab™Wa™y Nab Wa Ha') !
=p, (a®) 'baNab~ !

On the other hand, put ab~'a~! = vk, so that )L;f(a) = ha = v 'ab™!. Then
Ay (hf @) = py (ha(®) ™" (ha)~Yha = p; (a(®)™'ba~ v)v~ab™!
=p (a) ba"hHab™!. O

6.10. Theorem. The infinitesimal actions for \*, L™, pF, and p~ are the following, where
A, Beg=q.®qg_anda e G:

) A5(a) == —prt(Ad(a)B)a, Az(a) :== —pr~ (Ad(a)B)a,
pp(a) = —aprt(Ad@ ")B), pg(a) = —apr (Ad@@ ")B).
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Furthermore, as usual for left and right actions, for B, B’ € q we have

I P — ey

(2) [)\+7 )\i/] = _i[B.B’]v “‘B’ )‘B’] - _)‘[B,B/]’
[PﬁsPE/JZ,O[BVBrJg [Pﬁ,Pli/]:P[B.B/]-
[Ag.Ap) =0, lpg. pgl=0.

Moreover,

B XD =iy A=Ay

p+ (X)) =—py.  pr(Yi) = —py,

Mo(Xp)=—dy A (YD) = Ay,

p—(Xi) = =px . p-(¥i) =pj,
so that we can reconstruct the dressing actions from A%, A=, p+, and p~. For example, the
(local) left dressing action for Ay is given by

Gy x (GHPxG — G,
(g,u)a= A:,'Ai, (a) = p:(auga‘l)ag—l.

u

The (local) left dressing action for A_ is given by

G x (GH)PxG— G,

(g, u)a= )\;A;[, (a) = p:(agfl

ulg™! Yau. O

6.11. Remark. The dressing actions of G4 on G_, and of G_ on G4 can also be recon-
structed from this scheme. For (g, u) € G x G_ they are given by restricting the (local)
actions A, A7, pT, and p~ of G on G appropriately (see 6.9):

1

@ =pteu e e A ) = p; g uNu,

o (@) i=gp (gu™' g™, pg () = up (ug”'u").

Note that in these formulae one should replace, say, p,"(gu 1g™")g = pr (gu~") only if
the action is complete, or only for g and u near ¢, since the left-hand side is defined for all
g and for u near e, whereas the right-hand side needs both g and u near e.

6.12. Corollary. The dressing actions of Gy on G _, and of G_ on G4 are (local) Poisson
actions.

Proof. We prove it only, say, for the left dressing action of G_ on G .. At least locally this
is given by

MG x Gy = Gy, ATg) =A@ =pgu),
Due to Theorem 5.4(5) the mapping

$:G xG_3(gu—>gu'leG
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is a Poisson mapping (G4 x G _, A%+ x A®~) — (G, A_). By Corollary 5.5 the (local)
projection p;": (G, A_) — (GT, —A%+) is a Poisson mapping, so the composition A+ =
p;} o ¢ is also Poisson. 0

7. Examples

7.1. Example. Let us assume that in the Manin decomposition ¢ = q+ @ g— the sub-
algebra q_ is commutative then the simply connected Lie group G is isomorphic to the
cotangent bundle T*G; = G4 o< ., the semidirect product of G4 and the dual Lie
algebra, which is complete with respect to the dressing actions. ¢ : G4 x g— — T*G4 is
the left trivialization, y is the right trivialization. This situation was described in detail in

our earlier paper [2].

7.2. Example. We consider g = s1(2) with the standard matrix basis

i 0 L _Lfo Lo
“=3\0 4 ) 275\ =1 o) 3=300 o)

satisfying [e]. e2] = e3, [e2, €3] = €1, and [e3, ¢1] = e>. The following commutation

rules [e], e] = €3, [e]. €3] = €}, and [¢3, 5] = O for the dual basis in g = g% make
q = g4+ @ g_ into a Lie bialgebra which is isomorphic to 31(2, C) as six-dimensional real
algebra with g_ = sb(2, C), where the elements of the dual basis are given by

1/1 0 0 —i 0 1
* __ * *
e‘"z(o —1)’ “ <o o)’ é <o o)‘

The invariant symmetric pairing can be recognized as
y(A, B) = 2Imtr(AB).

We consider now the double Lie group G = SL(2,C) with G, = SU(2) and G_ =
SB(2, C). We will write the elements as follows:

1 12

G=SL(2,<C)9a:<
73 24

), where z; € C, 7124 — 223 = 1,
04 —v 2 2
Gy =SU2)s¢g= v g ) where o, v € C, la|* +|v|* =1,

!
G_=SBR2,0)>u= (O IZ])’ wheret > 0, y € C.
We define A (a) = %(ra +ar) withr = 3", ef Ae; on SL(2,C) as explained in 5.1.
We then extend it onto the whole space GL(2, C) of all invertible matrices by admitting
a € GL(2,C). Since the left and right invariant vector fields on g{(2, C) = C* = R8 satisfy
the same commutation rules as their restrictions to SL(2, C), we will get a Poisson structure.
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Of course it is tangent to SL(2, C), so that, if we consider the Poisson brackets between all
matrix elements z; and z;, the functions det = z;z4 — 2223 and det = 7124 — 2223 will be
Casimirs for the bracket. Thus we get a Poisson structure on G L(2, C) whose restriction
to SL(2, C) is exactly A, . We calculated the following Poisson brackets, which were also
obtained independently by Zakrzewski [36].

{z1, 22} = —3iz122, {z2.23) = iz124,

(21, 23) = 3iziz3. (22, 24) = 3iz224,

(21,24} =0, {23, 24) = —3izaza.

(.51} = Yl —ilaal (22 22) = —Lile? —ila)* —ilzal
{z3, 23) = =3ilzs/, {z4, Za} = —3ilzal? —ilz3 )%,

{z1. 22} = —iz3z4, (z2. Z3) = 5izaZ3,

{z1,23) =0, {22, 74} = —iz123,

(z1. 24) = 3iziZa, {z3,24} = 0.

The lacking commutators may be obtained from this list if we remember that the Poisson
bracket is real, e.g. {z;, z;} = {z;,z;}. One can then check that indeed det and det are
Casimir functions, and that z; < z4, 22 = —2z2, and 73 > —z3 defines a symmetry of the
bracket associated to the inverse a — a~! in SL(2, ©).

Our double group is complete since we have the following unique (Iwasawa) decompo-
sitions, where

1

NI

a2\ _ (s s (l/s s(Z122 + 7324)
3 24 5§73 S8Z) 0 s ’

v SLQ2,C) > SB(2,C).SU((2), wheret =

¢~ SL@2,C) - SU(2).SB(2,C), wheres =

1

Viz3|? + 1z4)?

2 2\ _ (1t @zt (12 -1z
23 24 0 1/t tz3  tzg )

Therefore, the bracket { , } is globally symplectic on SL(2, C). This bracket is pro-
jectable on the subgroups SU (2) and SB(2, C), and for the ‘left trivialization’ SL(2, C) =
SU2) - SB(2, C) it gives us the Poisson—Lie brackets on SU (2):

fe. @) =—ip)’.  (v.9) =0,
{o, v) = fiav, (@, v} = —Liav,
{o, D} = SiaD, {a, v} = —Liav,

and on SB(2, C):

. _ , 1
{y. 1} = ziye, v.v}=i <t2 - ;5> .
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It is possible to linearize S B(2, C) with this Lie—Poisson structure. The mapping

oy
(0 l/[) — (log(t),Rew’Imw)’

where

R% — log*(t 1 24124 1/1?
w = _—_O_g_g -y, R = _arcosh J_JL__'___i
12 2 2

gives us a Poisson diffeomorphism between (SB(2, C), A%-Y and the linear Poisson struc-
ture defining the coadjoint bracket on su(2), namely 20y A 0y + y3; A 0x +x0y A 9. These
formulae were first obtained by Xu, see also [36].

Since H*(SL(2,C)) = 0, the symplectic structure @ = A;l is exact, so there is a
potential ® with d® = w. Moreover, (SL(2,C), A}) is symplectomorphic to T*SU(2)
with the canonical symplectic structure, since (G- = SB(2, C), A%-)is Poisson equivalent
to b(2, C) with its s11(2)-dual Poisson structure. So from the Poisson point of view there
is no difference between (SL(2, C), A1) and T*SU (2) (they are isomorphic as symplectic
groupoids), but the group structures differ.

7.3. Example. On the ‘ax + b’ Lie algebra g4 spanned by X, X, with commutator
[X1, X2] = X, the cobracket given by »'(X1) = 0 and &'(X3) = X; A X defines a
Lie bialgebra structure. The Lie bracket on g = g% is then given by [Y}, Y2] = Y2, and
the remaining commutator relations on ¢ = g4 @ q_ is given by [ Xy, V1] =0, [X;, 2] =
=Y, [X2,. Y] = X3, [X3, Y2] = — X + Y. A matrix representation of g is the Lie algebra
al(2, R) via

1o 0 1 00 00
w=(oa) =0 o) = Y) = (03)

with the metric

y(A, By =tr(AJBJ), whereJ:((l) (1))

The subgroups G+ of the Lie group G = GL™*(2, R) of matrices with determinant > 0 are
given by

o (R N et

The calculation of the affine Poisson tensor A4 on G in the coordinates

(z ;) gives Ay = xydy A Dy +abdy A0y +xb(3y A dp + 85 A Dy).

It is degenerate at points with xb = 0 and vanishes at x = b = 0. This shows that
G+ G_ # G. Indeed, one can easily see that G G_ consists of all matrices with b # 0,
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and G_ G of those with x # 0. This should mean that the dressing vector fields are not
all complete. Indeed, A (X1) = —x(bx — ya)d,, which restricted to G gives —x28,, a
vector field on R™ which is not complete since its flow is given by

X0

W
FI; % (1) = ———.
0 @) txg + 1
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