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Abstract 

Lie bialgebra structures are reviewed and investigated in terms of the double Lie algebra, of 
Manin- and Gauss-decompositions. The standard R-matrix in a Manin decomposition then gives rise 
to several Poisson structures on the correponding double group, which is investigated in great detail. 
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1. Introduction 

In [2] we described a wide class of symplectic structures on the cotangent bundle T*G 
of a Lie group G by replacing the canonical momenta of actions of G on T*G by arbitrary 

ones. This method also worked for principal bundles and allowed us to describe the notion 

of a Yang-Mills particle which carries a ‘charge’ given by spin-like variables, by means of 

Poisson reduction. 
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In the latter half of this paper we consider ‘deformations’ of T*G in the form of so called 
double Lie groups equipped with the analogs of the symplectic structure on T*G, closely 
related to Poisson-Lie groups. Parts of the results may be found spread over different places, 
mainly in the unfortunately unpublished thesis of Lu [20], but also to some extend in [ 1,331, 
and others. Our presentation makes the double group the main object rather than Poisson- 
Lie groups, which makes the roles of G and G* manifestly symmetric and contains all the 
information about G and G* and all relations between them. All these are also associated 
to the theory of symplectic groupoids as ‘deformed cotangent bundles’ in general, and with 
mechanical systems based on Poisson symmetries as studied for instance in [23,36]. The 
explicit formulae from the second part have already found applications in [3]. 

The first half of this paper is devoted to the general setup: Recall that a Poisson-Lie 
group is a Lie group G with a Poisson structure A E T(A~TG) such that the multiplication 
map G x G + G is a morphism of the Poisson manifolds. The corresponding infinitesimal 
object, which determines a Poisson-Lie group up to a covering, is that of a Lie bialgebra, 
defined by V.G. Drinfeld. It is defined as a Lie algebra (a, b = [ , ]) together with the 
structure of a Lie algebra (n*, b’ = [ , I) on the dual space n* such that the bracket b’ 

defines a cocycle b’: g + A~!J on (7 with values in the g-module ~~8. The brackets b, b’ 

define the structure of a metrical Lie algebra on l = g @ g* with Manin decomposition. 
Recall that a metrical Lie algebra is a Lie algebra together with a non-degenerate ad-invariant 
bilinear symmetric form g (the metric), and that a Manin decomposition is a decomposition 
of a metrical Lie algebra into direct sum of two isotropic subalgebras. The metric g on I 
is defined by the conditions that the subspaces n, g* are isotropic and the restriction of g 
on g x g* is the natural pairing. Hence, there is a natural bijection between Poisson-Lie 
groups (up to a covering), bialgebras, and metrical Lie algebras with Manin decompositions. 
Remark that not every metrical Lie algebra admits a Manin decomposition [8]. We recall 
some basic constructions and facts on metrical Lie algebras in 2.4-2.7. A bivector C E A~(J 
on a Lie algebra (1 defines a cocycle 

ac : 9 --f ~~0, X t+ adxC. 

Moreover, C defines a structure of a Lie algebra on E(* if and only if the Schouten bracket 
[C, C] is ad, invariant. This condition is called the modified Yang-Baxter equation. 

For a metrical Lie algebra (n, g) a bivector C can be identified with an endomorphism 
R = C o g (the ‘R-matrix’). In terms of this endomorphism the modified Yang-Baxter 
equation (and other equations implying this) reduces to the generalized R-matrix equation 
(and some modifications of it), see (2.9). A Manin decomposition 0 = g+ @ Q- of a 
metrical Lie algebra TV provides a solution R = pr+ - pr_ of the R-matrix equation. More 
generally, we define a Gauss decomposition of a metrical Lie algebra LJ as a decomposition 
fl = R+ @g”@g_ of TV into a sum of subalgebras such that n+, g_ are isotropic and orthogonal 
to 9’. Any solution R” of the R-matrix equation (l-mYBE) on go, see 2.9, can be extended 
to a solution R = diag(-1, R”, 1) of the same equation on g. Moreover, if R” has no 
eigenvalues fl, then no is solvable and R” is the Cayley transform of an automorphism 
A of Go without fixed points: R ’ = (A + l)(A - 1)-l. Conversly, any R-matrix R on a 
metrical Lie algebra g defines some Gauss decomposition. 
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In 2.15 we give some simple constructions of Gauss decompositions of a metrical Lie 
algebra and its associated R-matrix. Remark that the problem of describing all bialgebra 
structures on a given semisimple Lie algebra !I+ (or the equivalent problem of determining 
all Manin decompositions (1 = cl+ @ R_ of metrical Lie algebras $1 with given (I+) is solved 
only for a simple Lie algebra !I+, [6,9]. The construction of Weinstein of a bialgebra structure 
on a compact semisimple Lie algebra shows that in general the isotropic subalgebras tr+, 
(I- of a Gauss decomposition of a semisimple Lie algebra 61. are not necessarily solvable. 
However, this is true if the metric g coincides with the Killing form of ~1, see [9]. 

The second part of the paper is devoted to explicit description of global versions of some 
objects which are studied in the first part. The basic object is the double Lie group G which 
corresponds to a metrical Lie algebra (1 with a Manin decomposition 0 = tr+ @ cl_. We 
describe explicitly different natural Poisson and affine Poisson structures on a double group 
G and the dressing action of subgroups G+, G_ associated with the isotropic subalgebras 

!l-c> <I-. 

2. Lie bialgebras, Manin triples, and Gauss decompositions 

2.1. Lie bialgebras and Lie-Poisson groups. A Lie biulgebra [ 1 l] consists of a (finite- 
dimensional) Lie algebra 0 with Lie bracket b = [ ~ ] E big* @ g and an element b’ E 
r\2~ @ :I* such that the following two properties hold: 
(1) b’ is a 1 -cocycle n + A2tt: &,b’ = Owhere (&b’)(X, Y) = -b’([X. Y])+adx(b’(Y))- 

adr(b’(X)). To put this into perspective, note that this is equivalent to the fact that 
X H (X. b’(X)) is a homomorphism of Lie algebras from $1 into the semidirect product 
$1 [x A’ (1 with the Lie bracket [(X, U), (Y, V)] = ([X. Y], adxV - adrU). 

(2) 0’ is a Lie bracket on (I*. 
In 1171 a graded Lie bracket on r\(tt x (I*) is constructed which recognizes Lie bialgebras, 

their representations, and gives the associated notion of Chevalley cohomology. 

2.2. Exact Lie bialgebras and Yang-Baxter equations. A Lie bialgebra ($1, b, b’) is 
called ex’xact if the 1-cocycle b’ is a coboundary: b’ = &C for C E A*!], i.e., b’(X) = 
adxC. A bivector C E ~~(1 defines a Lie bialgebra structure b’ = &C on $1 if and only if 
the Schouten bracket (see 3.4) is ad(g)-invariunt: 

(mYBE) [C. C] E (/&)“. 

This condition is called the modified Yang-Baxter Equation. In particular any Poisson 
bivector C E r\2g satisfying 

(YBE) [C, C] = 0 

defines a bialgebra structure 6’ = &,C in 3. This equation is called the Yang-Baxter 
Equation. 

If (1 is semisimple then by the Whitehead lemma Hi ($1. r\‘g) = 0, so any cocycle b’ is a 
coboundary, and the classification of all bialgebra structures on 0 reduces to the description 
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of all bivectors C E r\*g which satisfy (mYBE). If moreover the Lie algebra g is simple 
then the space (AIR)” is one-dimensional, generated by the 3-vector Bg E r\“g given by 
Bg(a, /?, v) := g([g-‘a, g-lb], g-’ y), where g denotes the Cartan-Killing form. So for 
simple 0 the modified Yang-Baxter Equation (mYBE) can be written, using the Schouten 
bracket, as 

[C, C] = cBR. 

All solutions of this equation for c # 0 for complex simple 3 were described in [6,9]. 

2.3. Manin decompositions. Let (n, b) be a Lie algebra and let b’ be a Lie bracket on the 
dual space (I*. Let us define a skew symmetric bracket [ , ] on the vector space 1 := g $ g* 

by 

[(X, ~1, (Y, B)l : = (b(X, Y) + ad$(a)Y - adit(B)X, 
b’(a, B) + adz(X)/3 - adX(Y)a), 

where adh(X)Y = b(X. Y), ad;(X) = adb(-X)* E End(g*), and similarly for b’. The 
adjoint operator ad(X, a) E End(l) is skew symmetric with respect to the natural pseudo- 
Euclidean inner product g on I which is given by g((X, (;u), (Y, fi)) = ((Y, Y) + (/l, X), and 
the skew symmetric bracket is uniquely determined by this property. The skew symmetric 
bracket [ , ] on L satisfies the Jacobi identity if and only if b’ : g + r\*g is a 1 -cocycle with 
respect to h: &,b’ = 0; or equivalently if and only if b : g* --, big* is a 1-cocycle with 
respect to b’: &,,gb = 0. 

Following Astrakhantsev [4] we will call metrical Lie algebra a Lie algebra I together 
with an ad-invariant inner product g: g([X, Y], Z) = g(X, [Y. Z]). 

A decomposition of a metrical Lie algebra (1, g) as a direct sum 1 = g+ @ g_ of two 
g-isotropic Lie subalgebras :I+ and n- is called a Munin decomposition. 

A triple of Lie algebras ((1, (I+, (I-) together with a duality pairing between g+ and tl_ 
is called a Manin triple if (I = g+ $ !I_, n+ and (I- are Lie algebras of 0, and the duality 
pairing induces an ad-invariant inner product on !I for which R+ and g- are isotropic. 

Theorem [lo]. There exist u natural bijective correspondence between Lie bialgebrus 
(ix, b, b’) and metricul Lie algebras (I. g) with Manin decomposition I = r~ @ g*. 

The Lie algebra I = !I@ !I* associated to the Lie bialgebra (n. b, b’) is called the Munin 
double. 

2.3. Examples of metrical Lie algebras. Any commutative Lie algebra has the structure 
of a metrical Lie algebra, with respect to any inner product. Any semisimple Lie algebra is 
metrical, the metric is given by the Cartan-Killing form. 

Let R be a Lie algebra. Let us denote by T*0 = $1 D( g* the semidirect product of the 
Lie algebra n with the abelian ideal <I*, where 0 acts on g* by the the coadjoint action. This 
is the Lie algebra of the cotangent group T*G of a Lie group G with Lie algebra n. The 
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natural pairing between 0 and the dual g* defines an ad-invariant inner product g on T*g for 
which the subalgebras ~1 and !I* are isotropic, by definition of the coadjoint action. Hence 
T*cl = (1 @ :I* is a Manin decomposition of the metrical Lie algebra T*~J It describes the 
Lie bialgebra structure b’ = 0 on ~1. 

2.5. We will now describe the double extension of a metrical Lie algebra according to Kac 
[14, 2.101 and Medina and Revoy [2.5]: Let (ct. g) be a metrical Lie algebra and let b be 
a Lie algebra together with a representation p : h -+ DeTakew(g, g) by skew symmetric 
derivations on 0. We then put 

(lb := h @ g @3 h*, 

IDI +x1 +al.D2+x2+wl 

= [h. D21b + [Xi. X21!, + P(Dl)(X2) - P(D’)(XI) 

+ 4x1. X2) + adg(Dl)(aa) - adE(&)(al). 

g,,(& +XI +a~, Dz+X2+cr2) 

= R(XI. X2) + @I > 02) + (a2. DI ). 

where the central cocycle c : i1 x !I + h* is given by (D. c(X, Y)) = g(p(D)(X), Y) for 
D E b. Then nh is again a metrical Lie algebra. Note that the metrical Lie subalgebra h $ b* 
is isomorphic to the cotangent Lie algebra T*h and that we may view nh as the semidirect 
product <lb = h [x (1, where Q is the central extension 

described by the cocycle c and where h acts on 11 by (p, ad:). 
The orthogonal direct sum of two metrical Lie algebras is again a metrical Lie algebra. 

In particular the orthogonal direct sum of a metrical Lie algebra CJ with a one-dimensional 
abelian metrical Lie algebra is called the trivial extension of (1. 

Theorem (Kac [ 14, 2.111; Revoy, Medina [25]). Any solvuble metrical Lie algebru can be 
obtained from a commutative metrical Lie algebru bq‘ an uppropriute sequence of double 
extensions and trivial extensions. 

2.6. The following result gives an analogon of the Levi-Maltsev decomposition for a met- 
rical Lie algebra. 

Theorem (Astrachantsev [4]). Any metrical Lie ulgebru $7 is an orthogonal direct sum 

consisting of a subulgebru 11 with commututive radical and a solvable ideal 1.. Moreover; (1 
is an orthogonal direct sum qf a maximal g-non-degenerute semisimple Lie subalgebra 6, 
and the cotungent algebra T*gi oj’u maxim& g-isotropic semisimple Lie suhulgebru Gi of (1. 
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2.7. Metrical extensions. Bordemann [8] gave the following construction of a metrical 
Lie algebras. 

Let n be a Lie algebra and let w : n A n + CT* be a 2-cocyle with values in the n-module 
a*. Then the Lie algebra extension 

0 --f ll* + g,,, --f n -+ 0 

described by w, i.e. the Lie algebra (I”, := n $ u* with bracket 

](a, a). (b, B)ln,,, := ([a. bl,, Ma. b) + ad*(a)@ - ad*(bb) 

is a metrical Lie algebra with metric 

g((a, a), (b. B)) := (a. b) + (B. a) 

if and only if w has the following property 

(a, w(b. c)) = (h, w(c, a)) for a, b. c E n. 

If zu = 0 then this is exactly the metrical Lie algebra T*n - thus Bordemann called this 
construction the T*-extension. 

Theorem (81. Any 2ndimensionul complex solvable metrical Lie ulgebra (1 is a metri- 
cal extension of some n-dimensional Lie algebra n. Moreover any isotropic ideal of (1 is 
contained in an n-dimensionul isotropic commutative ideal of 0. 

2.8. The Yang-Baxter equations on metrical Lie algebras. 
In the case of a metrical Lie algebra ((1. g) we can pull down one index of bivector 

C E r\2g and we can reformulate the (modified) Yang-Baxter equation in terms of the 
operator R = C o g : (1 + g* + $1. 

First let (0, b = [ , 1) be a Lie algebra. For any R E End(n) we define two elements 

bR> BR E O@fi*!7* by 

bR(X, Y) = [X. Y]R := [RX. Y] + [X, RY], 

BR(X. Y) := [RX, RY] - R[X. Y]R = [RX, RY] - R[RX, Y] - R[X, RY]. 

Note that BR is related to the Frblicher-Nijenhuis-like bracket [R, R] by 

;]R, RICX. Y) = [RX, RYI - R([RX. Y] + [X, RY]) + R2[X. Y] 

= BR(X. Y) + R2[X, Y]. 

Proposition. Let ((1, g) be a metrical Lie algebra, let C E r\2g and let R = C o g : g -_$ 
;I* + $1 be the corresponding operutor Then we have: 
(1) Via the isomorphism g -’ : g* --, (1 the bracket b’ = &,C E g* @A*R on (I* corresponds 

to the bracket bR on 3: 

gP’(b’(cz, ,6)) = bR(g-‘a. g-‘B) = [g-la, gP1t9]~. for (;Y, /? E (I*. 
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(2) Under the embedding ~jg + g @ big* induced by g, the Schouten bracket [C. C] E 
r\“g corresponds to the element ~BR E g @ /\*g*. 

Procllf: Let X, Y, 2 E r~ and a! = gX. B = gY E n*. Note that g(RX, Y) = g(X, -RY). 
Then 

(Z, b’((;Y, /3)) = (adzC, (Y A j3) = (C, (adz)*@ A j? + a! A (adz>*@) 

= (C, (adZ)*gX A gY + gX A (adz)*gY) 

= (C, -gadzX A gY - gX A gadzY) 

= -(CgadzX, gY) - (CgX, gadzY) 

= -g(R[Z. Xl, Y) - g(RX, [Z. Yl) 

= g(Z, [X, RYI) + g([RX, Yl. Z) 

= (z, g]X, YIR). 

For proving the second assertion we may assume without loss that C E r\‘g is decom- 
posable, C = X A Y, since both sides are quadratic. Then we have: 

R(Z) = tc 0 g)(Z) = ((X A Y) 0 g)(Z) = g(Y, Z)X - g(X, Z)Y, 

BR(U, V) = [RU. RV] - R[RU, V] - R[U, RV] 

= k(Y, U)X - g(X, U)Y, g(Y. V)X - g(X, WY1 

- g(Y, ]g(Y. WX - g(X, UIY. Vl)X 

+ g(X, [g(Y, U>X - g(X, WY, Vl)Y 

- g(Y, ]U, g(Y, V)X - g(X, V)Yl)X 

+ g(X, [U. g(Y, v>x - gtx, V)Yl)Y 

= -g(Y, Wg(X, V)[X, Yl - g(X, Wg(Y, VW. Xl 

- g(Y, WgUY, Xl. V)X - g(X. U)g([X. Yl, V)Y 
+ g(Y, V)g([Y, Xl, U)X + g(X* V)g([X, Yl, LI)Y. 

On the other hand we have for the Schouten bracket 

[C, Cl = [X A Y, x A Y] = 2[X. Y] A x A Y. 

$KC, Cl, a A gu A gV) 

= ([x, Y] A x A Y. (Y A gu A gv) 

( 

(LX, Yl, a) (X. ff) (Yt ff) 
= det g([X, Yl, W g(X, U) g(K U) 

g([X, Yl, VI g(X, v> g(Y, v> 
= (BR(U. V>.(.U), 

from the computation above. 
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Remarks. We may extend R H BR to a bracket in &I* @ 0 as follows. On decomposable 
tensors this bracket is given by 

and it defines a z-graded Lie bracket on /\*g* @ (1. If (1 acts by derivations on a graded 
commutative algebra A = @z, A;, the same formulae define a graded Lie bracket on 

A @ 51. 
Moreover we have BR = k [R, RI’, and by the graded Jacobi identity we get the analogon 

of the Bianchi identity [R, BRIB = 0. 
The invariant inner product g : g + g* induces an embedding 

A *+?I + A*n* @g, 

which is a homomorphism from the Schouten bracket to the graded Lie bracket [ , 1’. 
This follows from the polarization of (2) in the proposition above (note that the brackets in 
degree 1 are symmetric), since (7 and ~‘3 generate the whole Schouten algebra. 

On a manifold one may also consider the bracket [ , 1’ but it maps tensor fields to 
differential operators. 

There is a homomorphism of graded Lie algebras 

(A*n* @R? 1 . lR) + w*(!L n), c , P)? 

c;yt r\...r\ol,@X~da~t A . ..Adol.,@ad!,(X), 

where Q(a, $1) E R(tl: T(l) is the graded Lie algebra of all tangent space valued differential 
forms on (1 with the Frolicher-Nijenhuis bracket. The kernel of this homomorphism consists 
of r\*n* @Z(c)) where Z(g) is the center of 0. All these follow from the well-known formula 
for the Frolicher-Nijenhuis bracket (see e.g. 116, 8.71) 

[cP~~.~‘~l=cPA~~[~.rll+cPAL~~~‘17-C~(PA1C,~~ 
+ C-1) deS(P(dp A it+ 8 q + i,cp A d$ @c). 

where cp, $ E Q (0) are differential forms and where 4. q E ~?(!I) are vector fields. 

2.9. Corollary (see [32]). For C E A*g and R = C o g : g -+ g thefollobving conditions 
are equivalent. 
(1) h’ = aC is u Lie bmcket in g*, hence (g. b. b’) is cl Lie hiulgebru. 
(2) bR is a Lie brucket in $1. 
(3) The Schouterz bracket [C, C] E ~~(1 is ad,-invarimt. 
(4) BR E (g @ A~<I*) is g-invuriant. 
(5) For ~11 X. Y. Z E g we have 

LX. BR(Y. Z)l + [Y, BR(Z. X)] + [Z. BR(X. Y)] = 0. 

Pro$ It remains to show that (4) is equivalent to (5). This follows from the identity 
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R((ad(U)BR)(y, z). x) 

= -g([x, BR(Y, z>] + [y, BR(Z, x)] + [z. BR(X, Y)]. u). 

which holds for all X, Y, Z. U E (1. 0 

The following simpler equations obviously imply Eq. (5): 

(I-mYBE) RR + I o b = 0 or BR(X, Y) + I [X, Y] = 0, 
(c-mYBE) BR + cb = 0 or BR(X, Y) + c[X. Y] = 0, 

VW [C,C] =0 or BR =O, 

where I E End(tl)” is an ad,-invariant operator on $1, and where c is a constant in 06. If 
K = c (or K = rW) without loss we may assume that c = 1 (or c = fl). 

In [9, 3.21, it was shown that any structure of a bialgebra on a semisimple Lie algebra 
comes from a solution of (I-mYBE) for some I E End((r)!‘; and for a simple Lie algebra 
from a solution of (c-mYBE). 

It is also interesting to construct non-skew symmetric solutions of all these equations. 
Some class of solutions on a simple complex Lie algebra was constructed in [3 I]. 

Note that for an ad!,-invariant operator I E End(g)” we have B/ = Z* ob since Z[X, Y] = 
[f X, Y] = [X, ZY]. So any skew symmetric ad-invariant operator I gives a solution of the 
(mYBE). Non-constant operators of this kind exist on semisimple Lie algebras n if and only 
if ~1 has isomorphic simple summands: For example, if (1 = Itlt = (11 @ $ !I, = gl @ K’ 
then End(n)” = 1 @End(&), and any skew symmetric matrix A E End@) gives a solution 
I = 1 @ A of (mYBE). 

To distinguish equations for C E ~~0 and for R = C o g the equation ( I-mYBE) for R 
will be called the R-matrix equution, and solutions will be called R-matrices. 

2.10. Let ((1, b, g) be a metrical Lie-algebra and let R E End(n) be a skew symmetric 
endomorphism. 

Lemma [9,32]. The following conditions are equivalent: 
(1) The endornorphism R satisfies the R-matri.x equation BR + b = 0. 
(2) The endomorphisms Rh := R f 1 satisfy 

R+[R_X, R-Y] = R_[R+X. R+Y] for X. Y E (1 

(3) For all h, p E C and X. Y E g we have 

(1 + P)R[X, Yl = (1 + b.)[X, Yl + [(R - h)X, CR - p.)Yl 
- (R - h)[X. (R - p)Y] - (R - p)[(R - 1)X. Y]. 

(4) The brucket bR(X, Y) = [X, Y]R = [RX, Y] + [X, RY] isa Lie bracketundmoreover 
both Rh : (g, b,y) + (~1, b) are homomorphisms. 

2.11. For an endomorphism R : (1 + g and h E Q: the space 

3~ = ker(R - h)N for large N 
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is called weight spuce if it is not 0, and h is called weight of R. We have the following 
decomposition of n into a direct sum of all weight spaces: 

0 = @A.3 
hEW 

where W is the set of all weights. 
ForA,~~Ewithh+~#Oweput 

(1) 
1 fhp 

xoP:= h+E-L’ 
(2.1) 

Note that (fl) o I_L = fl. 

Lemma [9]. Let R he an R-matrix on a metricul Lie algebru (CJ, g). Then we have: 
(1) For weights h, p with h + p # 0 we have 

(2) For h # fl we have [!]A, +A] = 0. 
(3) The spaces ~1 are Lie subalgebras ofn, and [(IA, ~11 C ~1 for h # fl 

2.12. R-matrices and associated Gauss decompositions. We will discuss the relations 
between R-matrices on a metrical Lie algebra and its Gauss decompositions. 

Definition. A (generalized) Guuss decomposition of a metrical Lie algebra 
decomposition of (1 

into a sum of subalgebras, where the inner product g is non-degenerate on $x0. 
n+ and n_ are isotropic subalgebras which are orthogonal to go. 

h g) is a 

and where 

Note that a Manin decomposition is the special case of a Gauss decomposition with 
$7” = 0. 

Proposition. An R-matrix R on a metrical Lie algebra (0, g) defines a Gauss decomposition 

0 = (7- @ o” a3 (It3 

where ~15 are the weight spaces ~1 of R, and where 

is a solvable Lie subalgebra which admits un g-orthogonal automorphism A = ((R + 
l)ln”) o ((R - I)[& withoutjxedpoint (so AX = X implies X = 0). 
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Conversely, let g = !I_ @ go $ g+ be a Gauss decomposition of a metrical Lie algebra 
(0, g), where go admits an orthogonal automorphism A without fixed points. Put Ro = 
(A + 1) o (A - I)-‘. Then 

R = diag(-1, Ro, 1) : g + (1 

is an R-matrix. 
More generullJ, any R-matrix R’ on g which induces this Gauss decomposition has the 

form 

R’ = diag(-1 + N_. Ro, 1 + N+) : g --f $1, 

Mhere Ns : cl+ + <I+ are suitable nilpotent endomorphisms. 

Remark that, in fact, the R-matrix equation specifies the form of N*. For example, denote 
by :I; = ker(N*)’ C (I*. Then 

is a chain of ideals: [‘I,, (I+] c $,. 

Prooj The first statement follows immediately from Lemma 2.1 1. The operators R+lc1° 
are invertible. Note that by putting X = (R - I)-‘u and Y = (R - I)-‘v for u, u E ilo the 
equationinLemma2.10(2)becomes(R+l)(R-I)-’[u,u] = [(R+I)(R-I)-‘u,(R+ 
l)(R - I)-‘v]. This shows that A = (R + l)(R - l)-’ is an automorphism of 0’. It has 
no fixed point. It is easily seen that A is orthogonal if and only if R/go is skew symmetric. 

We now use the fact that a Lie algebra which admits an automorphism without fixed point 
is solvable, see [371. 

For the converse, since all arguments above were equivalencies, we see that Ro = (A + 
l)(A - l)-’ is a (skew symmetric) R-matrix on (1’. Using Lemma 2.10(2) again it follows 
by checking cases X, Y E :I_. n+, ~10 that R = diag(-1, Ro, 1) is an R-matrix. 

The last statement is obvious. 0 

2.13. Corollary. Any .semisimple R-mutrix R on a metrical Lie algebra (g, g) can be 
M’ritten (IS 

R = diag(-1, Ro. I) 

with respect to an uppropriate Gauss decomposition g = (I_ @ go @ ;I+, where Ro = 
(A + 1) (A - 1 )- ’ ,f?>r m semisimple orthogonal automorphism A of go cvithoutjxed point. 

2.14. Corollary. Any R-matrix R on N metrical Lie algebru (g, g) without eigenvnlues * 1 
is of the ,form 

R=(A+I)o(A-l)-‘, 

where A is at1 orthogonul crutomorphism of g without$xed point. 
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Note that non-orthogonal automorphisms A give non-skew symmetric solutions R = 
(A + 1) o (A - I)-’ of the R-matrix equation. 

2.15. Construction of R-matrices via Gauss decompositions. Let ((7, s) be a metrical 
Lie algebra. Choose a skew-symmetric derivation D of ~1 (for example an inner derivation 
ad(Xo) for X0 E ~1). It defines a decomposition 

and 

Lemma. For u complex Lie algebra this decomposition associated to a skew symmetric 
derivation D is a Gauss decomposition. 

Pro@ g((D - p)‘X, Y) = g(X. (-D - p)‘Y). 0 

We can iterate this construction if there exists non-nilpotent skew symmetric derivations 
of no, in particular if no is not nilpotent. Hence we have: 

2.16. Corollary. Let D be a skew symmetric derivation on (3, 8). 

The decomposition associated to D is trivial, g = go, zyand only if D is nilpotent. 
If 0 is not an eigenvalue of D then the associated decomposition is a Manin decomposition 

2.17. Remark. In the special case when the subalgebra ~1’ of a Gauss decomposition is 
commutative, then for any skew symmetric endomorphism Ro : go -_, go the operator 

R = diag(-1, Ro, I) 

is an R-matrix. It is known, [12] or [24, 9.3.101, that the connected component of the 
stabilizer of a regular point in the coadjoint representation of any connected Lie group is 
commutative. For a metrical Lie algebra the adjoint representation is isomorphic to the 
coadjoint one. Hence the Gauss decomposition associated to an inner derivation ad(X) of 
a regular semisimple element X E $1 has 0’ commutative. 

2.18. Construction of R-matrices without eigenvalues &l. Let r~ be a (nilpotent) Lie 
algebra which admits a derivation with positive eigenvalues. For example, let r~ = @i,O fli 
be a positively graded Lie algebra and let Dlni = iId. Denote by T*g = g DC g* the 
semidirect sum of g and the commutative ideal g* with the coadjoint action on g*. The 
natural pairing (1 x o* -+ C defines an adT *,-invariant metric g on ~1. The derivation D 
can naturally be extended to a g-skew symmetric derivation D on T*g without eigenvalue 
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0. Then At := exp(tD) is a g-orthogonal automorphism of (T*tx, g) without fixed point. 
Hence 

R = (A, + l)(A, - 1))’ 

is an R-matrix without eignevalues * 1. 

2.19. Proposition [32]. Let (1 = cl+ @ n- be a Manin decomposition of a metrical Lie 
algebra n, and let pr+ : $1 + Q he the corresponding projections. Then R = pr+ - pr_ 
is a solution of (1-mYBE) BR + b = 0. 

2.20. Proposition. Let (1 = CJ+ @ (10 @I g_ be a Gauss-decomposition of a metrical Lie 
algebra (7, and let pr* : q -+ g& be the orthogonal projections. Then any solution Ro of 
the (I-mYBE) on CJO has an extension R = c(pr+ @ Ro $ (1 - c)pr_) to a solution of the 
(I-mYBE) on 9. 

This gives us an inductive procedure for the construction of solutions of the (mYBE). 

2.21. Theorem. Let (n, g) be a metrical Lie algebra and let R : g + g be a solution oj 
2.9, (I-mYBE). Then the following Manin decompositions are isomorphic: 
(1) The Manin double 3 $ g* associated to the bialgebru structure b’ = &,(R o gg’)from 

2.3. 
(2) The direct sum (1 @ g = (7diag C3 RR with the metric g2((X, Y), (X, Y)) = g(X, X) - 

g(Y, Y) for (X, Y) E (7 @ s where Odiag = ((X, X): X E (r} is isomorphic to $1, 
and where the subalgebra OR = (((R + 1)X, (R - 1)X):X E $1) is isomorphic to 
the Lie algebra (Q, bR) with bracket bR(X, Y) = [RX, Y] -t [X, RY], which again is 
isomorphic to ((I*, b’), see 2.8. 

Proot For an R-matrix R the mapping (R + 1, R - 1) : (n, bR) + $1 x (1 is a homomorphism 
of Lie algebras into the direct product by Lemma 2.10, which is injective. Also by Lemma 2.8 
the mapping g : ((1, bR) + (!I*, b’) is an isomorphism of Lie algebras. The direct sum Lie 
algebra n $0 admits a decomposition into Lie subalgebras 

$1 CD n = {(X, Xl: X E nl@ {(CR + l)Y, (R - 1)Y): Y E al. 

where 

(u, v) = (x, X) + (CR + l)Y, (R - l)Y), 

2X = R(V - U) + V + U, 2Y = u - v, 

which are isotropic: 

g2((R + l)Y, (R - l)Y) = g((R + l)Y, (R + 1)Y) - g((R - l)Y, (R - 1)Y) = 0 

since R is skew symmetric for g. 0 
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2.22. Remark. The construction of an R-matrix on a semisimple metrical Lie 
algebra (g, g) reduces to the construction of a Manin decomposition g $ g = g_ @ g+ 
of the metrical Lie algebra (g @ g, g $ (-8)) where g_ = ndiag is the diagonal 
subalgebra. 

3. Notation on Lie groups 

3.1. Notation for Lie groups. Let G be a Lie group with Lie algebra g = T,G, multipli- 
cation p : G x G --f G, and for g E G let I-(~, pg : G + G denote the left and right 
translation, ~(g, h) = g + h = am = pLh(g). 

Let L, R : r~ -+ x(G) be the left and right invariant vector field mappings, given by 
Lx(g) = Tr(pLg) . X and Rx = T&g) X, respectively. They are related by Lx(g) = 
RAd(g)X (g). Their flows are given by 

FIFX (g) = g exp(tX) = pLeXP(‘X)(g), FIPX (g) = cxp(tX) . g = I*exp(rX) (8). 

Let 2, K’ :E Q ’ (G, 8) be the left and right Maurer-Cartan forms, given by K: (<) = 

T&L~-I) . $ and K;(C) = TR(pgm’) . <. respectively. These are the inverses to L, R in the 

following sense: L;’ = IC: : T,G + g and R;’ = I$ : T,G --f g. They are related by K; = 

Ad(g)K’ TgG -_, g and they satisfy the Maurer-Cartan equations do’ + ;[K’, I&]” = 0 R’ 
and d/c’ - ;[K’, K’]* = 0. 

The (exterior) derivative of the function Ad : G + GL(g) can be expressed by 

d Ad = Ad. (ad o I&) = (ad o K~) . Ad. 

which follows from d Ad(Tb,.X) = $luAd(g . exp(tX)) = Ad(g) ad(K’(Tw., X)). 

3.2. Analysis on Lie groups. 
df E Q’(G; V), a l-form on 
S’f : G --f L(g, V) off by 

Let V be a vector space. For f E C”(G, V) we have 
G with values in V. We define the left derivative Sf = 

6f(x). X := df . T&L,) .X = (Lxf)(x) for x E G, X E g. 

Result [27]. 
(1) For f E P(G, R) and g E C”(G, V) we have S(f . g) = f .6g + Sf EI g, where 

we use g* &3 V + L(g, V). 
(2) For f E CW(G, V) we have SSf(x)(X, Y) - Sljf(x)(Y, X) = Gf(x)([X, Y]). 
(3) Fundamental theorem of calculus: For f E CW(G, V), x E G, X E g we have 

f(x exp(X>) - f(x) = s 6f(x . exp(tX))dt 

0 
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(4) Taylor expansion with remainder: For f E CW(G, V), x E G, X E (1 we have 

N 1 
.fG . ev(X)) = C jlJ~i.f(s)(xi) 

,;=o . 

+ s (1 - t)N 
pJN+‘f(.X . exp(tX))dt(XN+‘). 

N! 
0 

(5) For f E Cm(G, V) and x E G the formal Tuylorseries 

factors to a linear functional on the universal enveloping algebra: U(g) -+ R. If for 
A E U(!J) we denote by LA the associated left invariant d@erential operator on G, we 

have (A, Tay,f) = (LAG) 

3.3. Vector fields and differential forms. For f E CW(G, n) we get a smooth vector 
field Lf E X(G) by L,(x) := T,(P,~). f(x). This describes an isomorphism L : Cm(G, $1) 
+ Z?(G). If h E COO(G. V) then we have Lfh(x) = dh(L,f(x)) = dh T,(wu,) f(x) = 
Sh(x) . f(x), for which we write shortly Lfh = 6h . f’. 

For g E C?(G. A’~I*) we get a k-form L, E Q”(G) by the prescription (L,), = 
g(x) o A”T~(~_~-I). This gives an isomorphism L : CW(G, r\n) + R(G). 

Result [27]. 

(1) 

(2) 
(3) 

(4) 

For ,f, g E CX(G, n) we have 

where K(.f, g)(x) := [f(x), g(x)l,,+6g(x).,f(x)-Sf (x).g(x), orshorterK(f, g) = 
[f* 81, + St? . f - Sf . s. 
Forg E C’OS(G. r\k!l*)andfj E C%(G, !I) wehave L,(L.f,. . , L,fk) = g.(fl. , ,fk). 
For g E C”(G, A~~J*) the exterior derivative is given by 

d(L,) = L~“~+i)iln~, 

where JA’g : G + A~+‘~I* is given by 

k 

GAg(x)(Xo, . . ., xk) = c(-l)‘d,&)(&)(xO, . . , z, . . , Xk), 
i=O 

and where an is the Chevalley difSerentia1 on ~6%. 
For g E CW(G, big*) and ,f E C”(G. g) the Lie derivative is given b, 

&,L,=L !I C, OS++’ 
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where 

(,+)(x)(X,, . . . xk) = ~(-l)‘&:)([f(x), xi]. xl,. . . , z,. . , Xk). 

K;~d(x)(xL~~~. Xk) = Gg(x)(f(x))(X1. . . , Xk) 

+ C(-l)‘g(x)(sf(*)(X;). XI,. . . z, . . . . Xk) 

3.4. Multi vector fields and the Schouten-Nijenhuis bracket. Recall that on a manifold 
M the space of multi vector fields f (ATM) carries the Schouten-Nijenhuis bracket, given 

by 

(1) [Xl A . ‘. A x,. YI A . . . A Yq] 

=c (-l)‘+‘[X;.Yj]A.‘.~...AX,AY1 A.“c...AYq. 

i..j 

See [28] for a presentation along the lines used here. This bracket has the following prop- 
erties: Let U E r(A”Tfd), V E ~(A”TM), W E ~(A~TM), and f E CX(M, [w). 
Then 

[U, V] = -(-l)([‘-‘)(“-‘)[v. U]. 

[U, [V, WI] = [[U. VI, W] + (-I)+‘)‘“_“[V, [U, WI], 

[u, v A w] = [u, v] A w + (-l)‘“‘-‘)‘!v A [u. w], 

[f. U] = -I(df’)U, 

where r(df) is the insertion operator r\“TM + A~-’ TM, the adjoint of df A ( ) : 
A’T*h’f + A’+‘T*h’f. 

For a Lie group G we have an isomorphism L: C?(G. ~$1) + T(ATG) which is 
given by L(u)., = AT(p.,) . u(n), via left trivialization. For u E P(G, A”(J) we have 
6~ : G --f L(n. A”g) = g* @ AUg, and with respect to the one component in g* we can 
consider the insertion operator 1(6u(x)) : A”g -+ A~+‘( $1. In more detail: if ~4 = f Ii for 
f E P(G. [w) and U E ~“9, then we put I(Sf(x) U)V = U A r(sf(x))(V). 

For the Lie algebra (1 we also have the algebraic Schouten-Nijenhuis bracket [ , 1” : 
APO x Ayg + AJ’+q-’ $1 which is given by formula (I), applied to this purely algebraic 
situation. 

Proposition. For ~4 E P(G. A’“g) and u E C”(G. A”(t) the Schouten-Nijenhuis bracket 
is given by 

(2) [L(u), L(u)] = L([u, v]” - C(&)(v) + (-l)(l-‘)(l-l)l(sv)(u)). 

Pruc$ This follows from formula (l), applied to 

[L(f . XI A . * A Xp), L(,q YI A . . . A Y,)]. 

where f, g E C?(G, iw) and X,, Yj E (1, and then by applying 3.3(l). 0 
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4. Lie-Poisson groups and double groups 

4.1. Lie-Poisson groups. A Poisson structure on a Lie group is a tensor field A E 
r(r\“TG) such that {f, g] := (df A dg, A) defines a Lie bracket on O(G, R). If we 
let A = L(h) for h E C?(G, bin) in the notation of 3.4, then A is a Poisson structure 
if and only if for the Schouten bracket we have [A, A] = 0. By Proposition 3.4 this is 
equivalent to 

(1) [k(g), h(g)]” = 2t(6h(g))(h(g)) for all g E G. 

A Lie-Poisson group [ 1 I] is a Lie group G together with a Poisson structure A E T(r\*TG) 
such that the multiplication ,u : G x G + G is a Poisson map, i.e. the pull back mapping 
p* : CCC(G, R) + COC(G x G, R) is a homomorphism for the Poisson brackets. This is 
equivalent to any of the following properties (2)-(6) for p = 2 (see [21]). Such a 2-vector 
field A is also called a Lie-Poisson structure. 

Lemma. For A E P(r\PTG) thefollowing assertions (2)-(6) are equivalent: 
(2) A is multiplicative in the sense that 

A(gh) = r\“T(pLg). A(h) + ANT. A(g) for all g, h E G 

(3) (Assuming that G is connected) A(e) = 0 and the Schouten bracket CL~ A = [LX, A] 
is left invariantfor each left invariant vectorjield LX on G. 

(4) (Assuming that G is connected) A(e) = 0 and the Schouten bracket CRY A = [Rx, A] 
is right invariant for each right invariant vector field Rx on G. 

(5) Ifwe let A = L(h) for h E CW(G, spy) in the notation of 3.4, then 

h(gh) = r\“Ad(h-‘) . h(g) + h(h) for all g, h E G 

This has the following meaning: Consider the right semidirectproduct G K r\J’n with 
multiplication (x, U) . (y, V) = (xy, Ad(y-t)U + V). Then the above equation holds 
if and only zfx H (x1 h(x)) is a homomorphism of Lie groups. 

(6) A : G + AJ’TG is a homomorphism of Lie groups, where L : G LX ~pg 2 APTG. 
A Poisson structure A on G is a Lie-Poisson structure ifand only ifthese conditions (2)-(6) 
are satisjed~for p = 2. 

Proof For the proof of the equivalence of conditions (2)-(4) see [21], the equivalence to 
(5) and (6) is obvious. 

We prove the last assertion. It follows from 

]p*f, p*g}GxG(X, y) = (d(f 0 CL) A d(g 0 p), A(x) @ A(y)) 

= (df (xy) A dg(xy)) . A~T~,,,)P. (A(x), A(Y)) 

= (df(xy) A dg(xy))~ A~U~(PL~) + T,bcl’)). (A(X), A(y)) 

= (dftxy) A dg(xy)) h2T&L,)A(y) + ~*T,(P~M~)) 
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compared with 

(P*u gJc)(x. Y) = (df A dg) . A(X.Y). ??

Note that if A 1 : G + API T G and A2 : G + AJ’Z T G are homomorphisms of groups 
with n o Ai = Idc, then their Schouten bracket [A 1, AZ] : G + /\J’I+P2--] TG has the 
same property. This follows from [21] and the equivalence to (6) from above. 

4.2. Theorem [ 111. If (G, A) is a Lie-Poisson group with Lie algebra g then by b’ : g + 
r\2g we get a Lie bialgebra structure on g, where b’(X) = (l~,A)(e) = Gh(e)X, where C 
denotes the Lie derivative. 

If ((1, b. b’) is a Lie bialgebra and G is a simply connected Lie group associated to $1, 
then the cocycle b’ integrates to a unique Lie-Poisson structure A E T(A~TG) on G. 

ProoJ See [11,21] for other proofs. By conditions 4.1(5) and (6) any multiplicative 2- 
vector-field A is a homomorphism of Lie-groups 

II = -1 
(IdA) 

G- GPC r\‘g 

and the induced Lie algebra homomorphism then is 

T,(A) . X :=(X. CLxA(e)) 

= (X. 6h(e) . X) (by Proposition 3.4(2)) 

= (Id,, b’)(X), 

and conversely any 2-cocycle b’ : g + ~~0 integrates to a Lie group homomorphism if G 
is supposed to be simply connected. 

It remains to show that b’ : A’$]* -+ g* satisfies the Jacobi identity if and only if 4.1(l) 
holds. Let us take the left derivative 6 at e of Eq. 4.1( 1) and get 

0 = 2[6h(e), h(e)]” - 2~(~2~(e))~(e) - 21(6h(e))6h(e) 

= 0 - 0 - [6h(e), f3k(e)]NR. 

so that the Nijenhuis-Richardson bracket of 6’ = &h(e) : ADO* -+ g* with itself vanishes. 
This just means that b’ is a Lie bracket on g*, see [30]. 

For the converse note first that if A : G + A~TG is a homomorphism of Lie groups 
then also the Schouten bracket [A, A] : G + A’TG is a homomorphism of Lie groups. 
But if b’ = Sk(e) is a Lie bracket on g* then the computation above shows that S([h, h]a - 
21(6h)h)(e) = 0 so that the associated Lie algebra homomorphism is just (Id. 0) : g + R D-C 
~~3. But then [A, A] = 0. 0 
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4.3. Affme Poisson structures. An affine Poisson structure on a Lie group G is a Poisson 
structure A such that Al is a Lie-Poisson structure or equivalently A,. is a Lie-Poisson 
structure, where 

For a Poisson structure A we also have 

(14 Al = L(h), h(g) = h(g) - h(e), 

(24 A, = L(L), b(g) = h(g) - Ad(g-‘)h(e), 
and A is an afline Poisson structure if and only if 

(3) rl(gh) = Ad(K’)h(g) + h(h) - Ad(K’)h(e). 

4.4. Lie groups with exact Lie bialgebras. Let G be a Lie group with Lie algebra $1. 
Suppose we have a solution C E ~~0 of the (mYBE), so that 6’ = aC is a Lie bialgebra 
structure for (n, cl*). Then we can write down explicitly the Lie-Poisson structure on any 
(even not connected) Lie group with Lie algebra n, as follows. 

We consider A+ : G + A’TG qiven by A&(g) := T(pu,)C + T(pg)C. Then obviously 
A_ is multiplicative and A+ is affine with (A+)/ = A_ and (A+),. = -A_. In the notation 
of (4.1) we have hi(g) = C f Ad(g-‘)C, and 

b;(X) = Shh(e)X = *(S(r\*(Ad o Inv))(e)X)C = Fad(X)C = r(&,C)(X). 

and since C satisfies (mYBE), the tensor fields A+ are Poisson structures. 

4.5. Manin decompositions and Lie-Poisson structures. Let (1 = t’+ @ t’_ be a Manin 
decomposition of a metrical Lie algebra ~1, and let pr* : g + g+ be the corresponding 
projections. Then by 2.19 the operator R = pr+ - pr_ is a solution of (I-mYBE) BR + b = 
0. 

So by (4.4) a Manin decomposition defines a canonically associated Lie-Poisson structure 
on each (even not connected) Lie group G with Lie algebra (1, as follows: Let C = R 08~’ E 
~$1 be the associated exact bialgebra structure, and consider Ah : G -+ r\*TG qiven by 

(1) A+(g) := T&)C i T(@)C. 

Then in the notation of (4.1) we have h+(g) = C f Ad(g-‘)C, and b;(X) = Shi(e)X = 
*~~(??(AdoInv)(e)X)C = Fad(X)C = ~(&,C)(X).ThetensorfieldA_ isarealanalytic 
Lie-Poisson structure and A+ is a real analytic affine Poisson structure with (A+)/ = A_ 
and (A+), = -A_. Since A+(e) = C is non-degenerate, the affine Poisson structure A+ 
is non-degenerate on an open subset of G. If G is connected, this open subset is also dense 
since the real analytic Poisson structure cannot be degenerate on an open subset. 

We shall investigate this kind of structure in much more details below. 
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4.6. Gauss decompositions and Lie-Poisson structures. Let G be a Lie group with a 
metrical Lie algebra ($1, g). From 2.20 we know that any solution R of the R-matrix equation 
can be described as follows. There is a Gauss decomposition R = o+ $ no @ g- with n+ 
isotropic and dual to each other, and with g non-degenerate on (10. Let pr%,c : g -+ gk.0 be 
the orthogonal projections. Then R is of the following form: 

(1) R = pr, @ (RO 0 pro) @ (-pr-)’ 

where Ro is a solution of (l-mYBE) on (70 without eigenvalues 1 or -1 (without fixed 
points). 

Let Xi be a basis of tt+ with Yi the dual basis of tt_, and let Z,j be an orthonormal basis of 
tlo, all with respect to the inner product R on (t = tt+ @ 00 @cl_. Let Ro(Zj) = xk RTZk = 

xk CkjZk be the (skew symmetric) matrix representation of Ro with respect to the basis 
Zj Then 

pr+(W = C Xi.g(U. Yi), 

pro(U) = C Zj.R(u, Zj), 

p_(U) = C Yi.g(U, Xi). 

so that 

(2) R=pr+-pr_+(Roopro)= CXi~yii-CRiZk@Zj 
i ,j.k 

C := R o g-’ = c Xi flYi+cdkZj/\Zk. 
J<k 

Let us consider Ah : G --f IY~TG qiven by 

(3) &(g) := T&)C f TWC. 

Then in the notation of (4.1) we have h*(g) = C f Ad&-‘)C, and 

b;(X) = 6h+(e)X = f(6(Ad o Inv)(e)X)C = =Fad(X)C = r(&C)(X). 

Since R was a solution of (1 -YBE) the tensor field A _ is a real analytic Lie-Poisson structure 
and A+ is a real analytic affine Poisson structure with (A+)/ = A- and (A,), = -A-. 
Since A+(e) = C is non-degenerate, the affine Poisson structure A+ is non-degenerate on 
an open subset of G. If G is connected this open subset is also dense since the real analytic 
Poisson structure cannot be degenerate on an open subset. 
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5. Explicit formulas for Poisson structures on double Lie groups 

5.1. The setting. It turns out that in the situation of 4.5 one can get very useful explicit 
formulae. Let us explain this setting once more, which will be used for the rest of this paper. 

Let G be any Lie group with a metrical Lie algebra ((1, Y) and suppose that it admits a 
Manin decomposition (g = TV+@_, y). Let pr* : g -F gh be the corresponding projections. 
By 2.20 the operator R = pr, - pr_ is a solution of (I-mYBE) BR + b = 0. 

Simplified notation. In order to compactify the notation we will use the following short- 
hand, in the rest of this paper: For LJ E @’ R etc. and for g E G we let 

glJ = g. U = &) T(p.,)U, Ug = U . g = &J T(pg)U. 

Let X; be a basis of n+ with Yi the dual basis of (I_ with respect to the inner product v 
on t] = (1+ &, n_. Then 

pr+iZ)=Cy(Z.Yi).X; = EYi @Xi y(Z), 
i i 1 i 

pr_(Z) = C y(Z, X;)Yi = 
i 

so that 

y(Z), 

pr+ = c 1 c Yi C3 Xj 0 Y = c+ 0 y, 
i 

pr_ = 
( 1 

C Xj @ Yi 0 Y = C 0 y, 
i 

where 

C+=CYj@Xj, C_=CXi@Yj. 

Then we have 

(1) R = pr+ - pr_ = o y, 

C=RO~-‘=C+-C_=CY~AX~. 

Then we consider Ah : G + A~TG qiven by (note the factor i) 

(2) n&(g) := &c f Cg). 

Theninthenotationof(4.1) wehaveh+(g) = i(CfAd(g-‘)C), andb;(X) = Sh*((e)X = 
??k$ A2 (6(Ad o Inv)(e)X)C = Fiad(X)C = 7$(&C)(X). The tensor field A- is a 
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real analytic Lie-Poisson structure and A+ is a real analytic affine Poisson structure with 
(A+)/ = A_ and (A+),. = -A_. Since A+(e) = C is non-degenerate, the affine Poisson 
structure A+ is non-degenerate on an open subset of G. If G is connected, this open subset 
is also dense since the real analytic Poisson structure cannot vanish on an open subset. 

5.2. Lemma. In the setting of 5.1 we have: 

(1) A+(a) = aC+ - C-a = C+a - aC_ 

= x(aYi @ aXi - Xia @J Yia) = C(YiU @ XiU - UXi @ aYj) 
i i 

(2) A_(a) = aC+ - C+a = C-a - aC_ 

= C(aYi 63 UXi - YiU @ XiU) = C(XiU 63 YiU - UXi @3 UYi) 
i i 

ProoJ: The tensor fields do not look skew symmetric but observe that 

(3) aC+ + aC_ = C+a + C-a. 

This is equivalent to C+ + C_ = @J2 Ad(a-‘)(C+ + C_) which, when composed with y, 
in L(g, 3) just says that Id, = pr+ + pr_ = Ad(a-‘)Id,Ad(a). Using (5) we have 

A+(a) = i(aC + Ca) = i(aC+ - aC_ + C+a - C-a) 

= C+a - aC_ = aC+ - C-a, 

A_(a) = $(aC - Ca) = $(aC+ - aC_ - C+a + C-a) 

= aC+ - C+a = C-a - UC-. 0 

5.3. The subgroups and the Poisson structures. In the setting of 5.1 we consider now 
the Lie subgroups G+ c G corresponding to the isotropic Lie subalgebras Q, and we 
consider the mappings 

cp : G+ x G- + G, cp(g, u) := g . u E G, 

1c, : G- x G+ -+ G, @(u, h) := u. h E G. 

Both are diffeomorphisms on open neighborhoods of (e, e). We will use g, u and V, h as 
local ‘coordinates’ near e. So, we have, at least locally in an open neighborhood I/ of e in 
G, well-defined projections p:, p,f : G > U + G+ and p,-, p, : G > U + G_ which 
play the role of momentum mappings: 

pl+(g . u) := g, p,'(u . h) := h E G+, 

p[-(u. h) := u, p,(g . u) := u E G_. 

When rp (or equivalently I,!J) is a global diffeomorphism (this is consistent for simply con- 
nected G with completeness of the the dressing vector fields; in these cases we will call G 
a complete double group) then the mappings ptTr are globally defined. 
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Remark. If the subgroup G+ is compact then the double group G is complete. Similarly 
for G-. 

Indeed, there exists a G-invariant Riemann metric on the homogeneous space G/G+. 
Then G acts on G/G+ by isometries locally transitively, hence transitively. This means that 
G = G+ . G_ globally and that G+ n G_ is finite. 

5.4. Theorem. In the setting above, the following tensor$elds are Lie-Poisson structures 
on the group G+ and G-, respectively, corresponding to the Lie bialgebru structures on 
g+ and !I- inducedfrom the Munin decomposition: 

(1) A’+(g) =g((Id, 18 Ad’(s-‘)pr+Ad’(g))C) E A~TG+ 

= g(-(Ad’(g-‘) @ pr+Ad’(g-‘))C) 

= EgXi @ pr+(Ad’(s)Y;)s 

= - cX;g A gpr+(AdG(gp’)Yi), 

(2) A’-(U) = u((Id!, A Ad’(u-‘)pr_Ad’(u))C+) E r\*TG 

= u(-(Ad’(K’) 8 pr_Ad’(K’))C+) 

=c uY; 18 pr_ (Ad’(u)Xi)u 

=-c Y;u @ upr_(Ad’(K’)Xi) 

The following tensor fields are non-degenerate Poisson structures on the groups G+ x G_ 
and G- x G+, respectively. 

(3) “P,(g, ‘) = A’+(g) $ A’-(U) + C YiU A gXi E A~T(G+ x G_), 

(4) A$(,, h) = -A’+(h) - A’-(u) + c uY; A Xih E r\*T(G_ x G+). 

Moreover they are related to the afline Poisson structures on G, i.e., we have 

The following tensor fields are Lie-Poisson structures on the groups G+ x G_ and G_ x G+, 
respectively: 

(6) A’P(g, u) =-A’+(g) + A’-(U) E A~T(G+ x G-), 

(7) A%, h) =-A’+(h) + A’-(V) E A~T(G_ x G+). 

Moreover they are related to the Lie-Poisson structure on G which corresponds to C, i.e. 
we have 

(8) Tv.AT=A_oq, T@A!=A-o$. 
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Proc$ Using 5.2( 1) we have 

A+(gu) = E(guYi @ gUXj - XigU @ YjgU) 

=c g(Ad(u)Yi 8 Ad(u)Xi - Ad(g-‘)Xi CQ Ad(g-‘)Yi)u 

=c s(Ad(u)Y; @ pr_(Ad(u)Xi) + Ad(u)Yi 8 pr+(Ad(u)X,) 

- Ad(g-‘)Xi @ pr_(Ad(g-‘)Yi) - Ad(g-‘)Xi @ pr+(Ad(g-‘)Yi))u 

In L(c1, 0) we have (compare with 5.1(l)) 

c Ad(u)Y; 8 pr+(Ad(u)Xi) o y 
i ) 

= pr+ o Ad(u) o pr, 0 Ad(u-‘) 

= pr, o Ad(u) o (Id, - pr-) o Ad(u-‘) 

= pr+ - pr, o Ad(u) o pr_ o Ad(u-‘> = pr+ - 0, 

for pr+ o Ad(u) o pr_ = 0 since u E G_. Thus we get 

C Ad(u)Yi @ pr+(Ad(u)Xi) = C Y; @I Xi 
i i 

and similarly we obtain 

C Ad(g-')Xi @ pr_(Ad(g-‘)Yi) = C Xi 69 Yi. 
i i 

so that 

A+(gu) =g C uY; C3 pr_(Ad(u)Xi)u 
i 

)+B(TYiAxi) 

-c 
i 

Xig @ gpr+(Ad(g-‘)Yi) u 

i ) 

= ~(,*u)cp AC-(U) + AC+(g) + c YiU A &‘xi , 
i ) 

which proves (3) and part of (5) In a similar way one proves (4) and the other part of (5). 
Next we check that the two expressions for A’+ in (1) are the same. We have to show 

that the following expression vanishes: 

c gx; ~3 pr+Wk)Y~k + c Xix @ g pr+(AdW’)Yi) 

= C Xi 8 Ad(g-‘1 pr+(Adk)Yi) + CAd(g-‘)Xi @ pr+(Ad(g-‘)Yi) . 
i i ) 
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The term in brackets, composed with 1/ from the right, is the following endomorphism of 

Cl: 

Ad(g-‘)pr+Ad(g)pr_ + pr+Ad(g-‘)pr-Ad(g) 

= Ad@-‘)pr+Ad(g)(Id - pr,) + pr+Ad(K’)(Id - pr+)Ad(g) 

= Ad(g-‘)pr+Ad(g) - Ad(g-‘)pr+Ad(g)pr+ + pr+ - pr+Ad(C’)Pr+Ad(g) 

= Ad(g-‘)pr+Ad(g) - pr, + pr, - Ad(g-‘)pr+Ad(g) = 0, 

since Ad(g-‘)g+ c g+ and pr+jg+ = Id. In the same way one shows that the the two 
expressions for AC- m (2) coincide, and similar computations show that all expressions in 
(1) and (2) are indeed skew-symmetric (which is clear from the beginning). 

Next we show that A’+ is multiplicative. We have the following chain of equivalent 
assertions: 

AC+ (gh) = gAG+ (h) + A’+ (g)h. 

(gh)-‘A’+(gh) = h-‘AC+(h) + h-‘g-‘A’+(g)h, 

c Xi @ Ad(gh)-‘pr+(Ad(gh)Yi) 

=c Xi @ Ad(h-‘)pr+(Ad(h)Yi) 

+ xAd(h-‘)-Xi CG Ad(gh))‘pr+(Ad(g)Y;), 

Ad(gh)-‘pr+Ad(gh)pr 

= Ad(h-‘)pr+Ad(h)pr_ + Ad(gh)-‘pr+Ad(g)pr-Ad(h). 

Both sides of the last equation vanish when applied to elements of n+, and on elements of 
n_ we may delete the rightmost pr_, so this is equivalent to 

pr+Ad(gh) = Ad(gM+Ad(h) + pr+Ad(g)pr-Ad(h) 
= Ad(g)pr+Ad(h) + pr+Ad(g)(Id - pr+WW) 
= Ad(g)pr+Ad(h) + pr+Ad(gh) - pr+Ad(g)pr+Ad(h), 

which is true since Ad(g)(g+) c n+. 
Finally we show that the group homomorphism AG+ : G+ + A~TG+ is associated to 

the bialgebra structure given by the Lie bracket on g_ 4 (g+)*. For that we consider, as 
explained in 4.1 and in the proof of 4.2: 

(9) h’+(g) = gp’A’+(g) = c Xi @ Ad(g~‘)pr+(Ad(g)Y;), 

GhG+(e)X = 0 + c X; &I pr+(ad(X)Yi), 

Y(6~G+(e)X, Yk @ Yl) 
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=c y(Xi, Yk)Y(pr+ad(WYi, Y/) 

365 

= y(pr+aW)Yk, Yl) = v(ad(X)Yk, pr*+Yl) 
= v([X, Ykl, pr_Yl) = VW, [Yk, &I>, 

which we had to prove. Let us now investigate the Lie-Poisson structure on G. From 5.2(2) 
we have 

A-(gU) = E(gUYi @ gUXj - YigU @ XigU) 

=c R(Ad(u)Yi @ Ad(u)Xi - Ad(g-‘)Yi 8 Ad(g-‘)Xi)u 

=c g(Ad(u)Yi @ pr_(Ad(u)Xi) + Ad(u)Yi @ pr+Ad(u)Xi 

- pr_(Ad(g-‘)Yi) @ Ad@-‘)Xi - pr+(Ad(g-‘)Yi) @ Ad(g-‘)Xi)u. 

In L ($1, n) we again have 

C 
c Ad(u)Yi @ pr+Ad(u)Xi o y 

i 

= pr+Ad(u)pr+Ad(u-I) 

= pr+Ad(u)(Id - pr_)Ad(u-‘) = pr+ - 0. 

-c 
( 

pr_(Ad(g-‘)Yi) @ Ad@-‘)Xi 0 y 
i 1 

= -Ad(g-‘)pr+Ad(g)pr*_ 

= -Ad(g-‘)pr+Ad(g)pr+ = -pr+, 

-c 
( 

pr+(Ad(g-t)Yi) @ Ad&-‘)Xi 
i 1 

0 Y 

= -Ad(g-‘)pr+Ad(g)pr: 

Xi @ Ad(g-‘)pr+(Ad(g)K) 0 Y. 

Thus we get 

A-(gu) = C g(Ad(u)Yi @ pr_(Ad(u)Xi) - Xi @ Ad(g-‘)pr+(Ad(g)Yi))u 

=g CuyI @pr-(Ad(u)Xi)u CgXi C3pr+(Ad(g)Yi)g u 
i i 

= gAG- (co - A’+(g)u = T~,,,)~(AG- (u) - A’+(g)), 
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which proves (6) and (8). All remaining statements can be proved analogously, or are 
obvious. 0 

5.5 Corollary. In the situation c?f 5.1 we have: 

(1) The Poisson structure A: on the direct product group GtQ x G_ is afine with 

#Jr(g. u) = AC’(g) + AG-(U), 
(A:)/(% ~1) = A’+(g) + A’-(u) + c y;u ,q Xig - Cuy; ,, gX;, 

i i 

(2) 

(3) 

where the vector$elds g H gX;, X;g [iye left and right invariant with respect to the 
opposite group structure on G+. 
Moreover; the Lie-Poisson structure (A:),. on GtQ x G_ is the dual Lie Poisson 
structure to A_ on G, i.e., it defines the Lie algebra structure on g. 
The Poisson structure A$ on the direct product group GLp x G+ is a&e with 

(A$),+. h) = -A’+(h) - A’-(U), 

(A;),@, h) = -A”+(h) - A”-(u) + c Yiu A X;h - c vY; A hXi. 
i i 

(4) 

(5) 

where the vectorhelds g H vYt . Y; u are left and right invariant with respect to the 
opposite group structure on G-. 
(G+, -A G+ ) and (G_, A’-) are Lie-Poisson subgroups of the Lie-Poisson group 
(G. A-). 
The (local) projections from 5.3 

p;, p,lr : (G, A_) -+ (G+, -A’+), p,-, p,: : (G. A_) + (G-, A’-), 

are Poisson mappings. 

(6) The (local) projections from 5.3 

(7) 

(8) 

(9) 

pl + : (G. A+) + (G+, A’*), p,’ : (G, A+) + (G+. -A’+). 

pt- : (G, A+) -+ (G-. A’-). p,: : (G, A+) + (G-, -A’-) 

are Poisson mappirqs. 
Themapping(G+. A’+)x(G, A+) --+ (G, A+)givenby(g,a) H gaisaleftPoisson 
action of a Lie-Poisson group. 
The mapping (G. A+) x (G_. A’-) + (G. A+) given by (a, u) H gn is a right 
Poisson action of a Lie-Poisson group. 
The Lie-Poisson group dual to (G, A-) is G+ x G”p btlith the Lie-Poisson structure 

-(A$),. 

Proof On the direct product group G”+p x G_ the vector held g ti X,g is right invariant, 
so expressions in (1) follows directly from 4.3 and the form 5.4(3) of AT. The Poisson 
structure (AT), is then visibly a Lie-Poisson structure on Gy x G-, so (AT), is affine. 
The proof of (3) is similar. 
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For (2) we consider, as explained in 4.1 and in the proof of 4.2, see also the proof of 
5.4(9): 

+ C Ad(Kl)Yi A Xi - C Yi A Ad(g-‘)Xi, 

Gh’P,,,(e, e)(X, Y) = 6hG+(e)X + 6hG- (e)Y 

- Cry- Yilo- A Xi + C Yj A [X, X;],, 

= b”- + lP+ - Cry. Yil{,_ A xi + c Yj A [X, Xi],,, 
i i 

where X E ix+ and Y E R_. If we take this into the inner product with elements Yk @ Y/, 
Yk @ X/, etc., use 5.4(9) and proceed as there, the result follows. 

Conditions (5)-(g) follow from the formulae for A+ and A- in the ‘coordinates’ (g, U) 
and (v, h), and from the fact that A’+ and AC- are multiplicative. 

Condition (9) is analogous to (2). 0 

5.6. Let us note finally that the decompositions 5.4(3) and (4) of the Poisson structure A+ 
on G 2 G+ x G_ are surprisingly rigid. 

Theorem. Suppose that a Poisson structure A on a manijold H x K which is a product of 
two Lie groups qf equal dimension admits a decomposition 

A(h, k) = A”(h) + A’(k) + c Y:(k) A X;(h) E A2T(/l.kj(H x K), 

where AH and AK are tensor$elds on H and K, respectively, and where XI are the left 
invariant vectorjields and Y/ the right invariant vectorjields on H and K, with respect to 
bases Xi of (1 and Y; oj’r. 

Then AH and AK are ajfine Poisson structures on H and K, respectively and (H, AH), 
(K, AK) is a dual pair oj’ Lie-Poisson groups and A represents the ‘symplectic’ Poisson 
tensor on the corresponding group double. 

ProojI The vanishing Schouten bracket [A, A] yields 

0 = [AH,AH] E f (A’TH) 
+ [AK, AK] E f(r\“TK) 

+2x Y: A [X(. AH] - C[Yf, Yj]’ A X( A Xj E .Z(K) 63 T(A~T H) 
i ij 

-2C[Y:, AK] A Xf + C Y[ A YI A [Xi, Xj]’ E f (A~TK) @x(H). 
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Each of the lines vanishes by itself: The first two lines then say that AH and AK are Poisson 
tensors on H and K, respectively. Using the structure constants cz of h with respect to the 
basis Xi, and dz of f with respect to Yi, the last two lines can be rewritten as 

or by 

These are just conditions (3) and (4) of 4.1 without the further assumption that AH(e) = 0 
or AK(e) = 0, so we can conclude from there that AH and AK are affine Poisson structures, 
respectively. For their associated Lie-Poisson structures 

(AH),(h) = AH(h) - AH(e)h, (AK)[(k) = AK(h) - kAK(e) 

we get 

L,l,(AH), =C,pl” = ; c&X; A x;, 
ij 

so that the Lie-Poisson structure (AH), corresponds to the cobracket 

b;, : fj + A2b, b;,(X,) = i CdzXi A Xj, 
ij 

and the Lie-Poisson bracket (AK)l corresponds to the cobracket 

b; : t -+ off, 

Hence bk is dual to the Lie bracket on t, and 6; is dual to the Lie bracket on h, with respect 
to the pairing y (Xi, Yj) = Sij. 0 
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6. Dressing actions and symplectic leaves 

6.1. Lie algebroids. On every Poisson manifold (M, A) the Poisson tensor defines the 
mapping T*M 3 a H crc := ra_4 E TM, and a Lie bracket on the space of l-forms 
defined by 

(1) {a, ,l9} := i,gd/fl- ipda + din(a A /!I). 

The mapping ( )O : L?‘(M) + .X(M) is then a homomorphism of Lie algebras, 

(2) I& Bl” = la? PI; 

this is also expressed by saying that A turns T*M into a Lie algebroid with anchor mapping 

( )O. 

6.2. The dressing action. Affine Poisson structures on a Lie group G may be characterized 
by the property that the left invariant l-forms (or equivalently the right invariant ones) are 
closed with respect to the bracket 6.1( 1). 

Consequently, for an affine Poisson structure A on G the mappings 

h : CJ* + X(G), k(X)(a) := -(aX)3, 

p : R* --f J(G), p(X)(a) :== (Xa)P 

are an anti-homomorphism and homomorphism of the Lie algebras $ and $, respectively, 
where $ is the dual space LX* with the Lie bracket corresponding to A,., and where t$ 
corresponds to At. The fields h(X) are called left dressing vector fields on G, and the 
p(X) are called right dressing vectorjields. They may be considered as infinitesimal ac- 
tions of the corresponding dual groups. We have seen such actions already in 5.5(4) and 
(5). If we can integrate this infinitesimal action to a global one, called the dressing ac- 
tion (if the dressing fields are complete), the affine Poisson group (G. A) will be called 
complete. 

In any case, the left (or right) dressing vector fields generate the characteristic distribution 
of A, whose leaves are precisely the symplectic leaves of the Poisson structure A. 

One believes that dressing actions describe ‘hidden symmetries’ of physical systems. 

6.3. Theorem. Let G be a Lie group with a metrical Lie algebra (a, y) which admits a 
Manin decomposition $1 = R+ @ (I_. In the setting of 5.1, the dressing vector$elds for the 
ufine Poisson structures A+ and A_ on G are the following: 

(1) 

(2) 

h+(Xi)(a) = -pr+(Ad(a)Xi)a, 

h+(Yi)(a) = pr_(Ad(a)Yib, 

h-(Xi)(a) = pr_(Ad(a)Xi)a, 

h_(Yi)(a) = -pr+(Ad(a)Yi)a, 

p+(Xi>(a) = apr+W(a)-‘Xi), 
p+(Yi)(a) = -a pr_(Ad(a)-’ Yi). 

p-(Xi)(a) = -a pr_(Ad(a)-‘Xi), 

p_(Yi)(a) = apr+(Ad(a)-‘Yi). 



370 D. Alekseevsky et al. /Journal of Geometry and Physics 26 (1998) 340-379 

Proof For instance, by 5.2, 

P+(Xi)(u) = y(y(Xiu))A+(u) = r(y(Xiu)) C(Yja @ XjU - axj 63 UYj) 

=c (v(XiU, YjU)XjU - 1/(XiU, UXj)U~j) 

.i 

= Xiu - upr_(Ad(u-‘)Xi = u(Ad(u-‘)Xi - pr_(Ad(a-‘)X;)) 

= u(pr+(Ad(u-‘)Xi)). 0 

6.4. Corollary. The Poisson tensors Ah may he written in the following alternative form: 

(1) A+(u) = c(u& @ pr+(Ad(u)X;)u - uXi @ pr_(Ad(u)Yi)u) 

=c (Y;u @u pr+(Ad(u-I)Xi) - Xiu @ upr_(Ad(u-‘)Yi)). 

(2) A-(u) = - x(uX; CD pr+(Ad(u)Yi)u - uYi @ pr_(Ad(u)Xi)u) 

ZZ- c (Xiu @ u pr_(Ad(u-‘)Yi) - Yiu @ a pr+(Ad(C’)Xi)). 

Proof From the definition of ( )- : T*G -+ TG we have 

A+ = x(-UYi @ h+(Xi) - UXi @ h+(Yj)), etc. 0 

6.5. Corollary [I]. 

(1) 

(2) 

(3) 

The characteristic distributions Sk of the Poisson structures A* may be described us 
folloWs: 

S+(a) = u(pr+(Ad(u-‘k+) + pr_Ad(a-‘)n-) 

= (pr+(Ad(u)n+) + pr_Ad(u)n-)a. 

S-(u) =u(pr_(Ad(u-‘)n+) + pr+Ad(u-‘)n-) 

= (pr_(Ad(uk+) + pr+Ad(u)c~-)o. 

In particulur; S+(u) + S_(u) = T,G. 
The symplectic leuves of S+ ure the connected components of the intersections of orbits 
G+ a G_ 17 G_ a G+, und the symplectic leaves of S- ure the connected components 
of the intersections of orbits G_ a G_ n G+ a G+, for u E G. 
The Poisson structure A+ is non-degenerate precisely on the set G+G_ n G-G,; so 
it is globally non-degenerate tfund only $G+G_ = G. In particular; if (G, A+) is 
complete 6.2 then A+ is non-degenerate. 

Proof (1) follows directly from Theorem (6.3) since the dressing vector fields generate the 
characteristic distribution. To prove (2) observe that the tangent space to the intersection of 
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orbits G+ a G_ n G_ a G+ at (1 E G is 

(!I+u + a!~-) n (~I-u + a!~+) 
= u((Ad(u-‘)g+ + n-) n (Ad(a-‘)!l- + n+)) 

= u (pr+ (Ad(a -‘)!x+) + pr_(Ad(a-‘k-)) = S+(a). 

so that the connected components of G+ a G_ n G_ a G+ are integral submanifolds of S+. 
For S_ the proof is similar. 

The intersection G+G- f’ G-G+ is an open and dense subset of G consisting, by (2), 
of points where A+ is non-degenerate. If the orbit G+LzG_ meets G+G_ n G-G+ then 
it is contained in G+G-, so G+G- f’ G-G+ consists of all points where A+ is non- 
degenerate. 0 

6.6. On M : = G+G_ f’ G-G+ the Poisson structure A+ is symplectic, so let us describe 
the associated symplectic form w = (A+)-’ in terms of the coordinates (g, U) and (u. h) 
introduced in (5.3). We will start by describing the dressing vector fields on the groups 
(G+ x G-, A”,) and (G_ x G+. A$). In order to avoid problems of always having to 
tell which multiplication is opposite, and to use a notation which differs from that used 
in Theorem 6.3 we will write (uX)~ for the dressing vector field corresponding to the left 
invariant l-form on G+ x G* represented by q(g, U) = UX in the obvious way: 

Y(UX, XXi + Uu;) = I/(UX, UYj) = v(X. Yj). etc. 

After easy calculations we get from 5.4(3) and (4): 

Theorem. In the situutions above, the dressing vector$elds are given by: 

(1) On (G+ x G-, A’P,(g. u)): 

(Xiu)’ = gX; - 1( pr-(Ad(u-‘)X,). 

(Yig)p = -gpr+(Ad(g-‘)Yi) - pr_(Ad(g-‘)Yi)u. 

(uX;)’ = pr_(Ad(u)X;)u + gpr+(Ad(u)Xi)u. 

(gY;): = pr+(Ad(g)Y;)g - Y;u. 

(2) On (G- x G+, A$(v. h)): 

(uX;)’ = X;h - pr-(Ad(u)Xi)u, 

(hY;)O = -pr+(Ad(h)Y;)h - upr_(Ad(h)Y;), 

(X;V)’ = u pr_(Ad(u-‘)Xi) + pr+(Ad(V’)Xi)h, 

(Y;h)r = hpr+(Ad(h-‘)Yi) - uY;. 

Denote now (X~U)~ = cp*(Xu)’ E .t(G+G-), etc., and(uXi)” = ~@*(Xiu)~ E .%(G_G+), 
etc., and cull them the undressing vector fields. They are given at the point a = gu = uh E 
M=G+G_nG_G+cGby 
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(X~U)~ = a pr+(Ad(u-‘)X;), (Yig)” = -Yia, 
(UXi)* = axj, (gYi)A = -pr(Ad(g)Yi)a, 
(uX~)~ = pr+(Ad(v)X;)a (hYi)” = -aYi, 
(Xiv)/’ = Xia. (Y~/z)~ = -a pr_(Ad(h-‘)Yi). 

Proofi We only prove (3), and only one example: 

(X~U)^ =W*(XiU)D = p*(gXi - u pr_(Ad(u-*)Xi)) 

= gXiu - go pr_(Ad(u-‘)Xi) 

= gu(Ad(u-‘)Xi - pr_(Ad(K’)Xi)) 

= a pr+(Ad(u-‘)Xi). 0 

6.7. Corollary. Atpoints a = gu = vh E M = G+G_ n G-G+ c G the afine Poisson 
structure is given by 

(I) A+(a) = C((uXi)” @ (hYi)* + (Xiu)A 8 (Yig>^) 

=c ((Xiu)^ @ (gYi)A - (Yih)’ 8 (uX~)^). 

The associated syrnplectic structure w may be written as 

(2) WI = c ((uXi> 8 (hYi) + (Xiv) @ (Yig)) 

= c ((Xiu> @ (gyi) - (Yih) @ (uXi)^>t 

where we identlfi the l-forms uXi, etc., on G+ x G_ and the l-forms hYi, etc., on G_ x G+ 
with l-forms on M via the d@eomorphisms q and $r. Formally correct we should write 
(Cp-‘)*(uXi), etc. 

Prooj The form (1) of A+(a) can be checked by easy calculations. But (1) shows that we 
can construct A+(a) from (uXi)^ = t(uXi)A+, etc., thus we can construct w, = A+(a)-’ 
in the same way from the corresponding 1 -forms uXi . 0 

6.8. Remark. We can write 6.7(2) in a more ‘coordinate free’ form: 

where pcG = (UXi) @ Yi is the left Maurer-Cartan form on G_ pushed via q~ to M = 

G+G_ n G-G+ c G, and where 8$- = (Xiv) @ Y; 1s t h e right Maurer-Cartan form on 
G- pushed via r// to M, etc. This expression (1) should be compared with the corresponding 
formula in [l], or with formula 2.3(3) in [2] for the case of a cotangent bundle T*G+. So 
6.7 is a generalization of these results in [2] to the case of a double group. 
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6.9. Recall now from (5.3) the projections p,f, p,f : G > U --f G+ and p,-, p; : G > 
U + G_ which we get from inverting cp and $,,respectively. For a E G and for b near e 
in G we then define 

(1) h:(a) := pf(abb’a-‘)a, h,(a) := p,(abb’a-‘)a, 

&a) := ap~(abb’a-‘), &(a) := apt-(ab-‘a-‘). 

Theorem. The mappings hf and h- dejine left (local) actions qf G on G, and ,o+ and p- 
dejine right (local actions), i.e., 

(2) h:@;(a)) = $(a), h;@;(a)) = k;,,,(a). 

&+(6$(a)) = o&(a), &(&(a)) = &,(a). 

The subgroup G+ is invariant under hf and p+ while G_ is invariant under h- and p-. 
Moreover, the pairs h+, h-, and ,o+, p- commute: 

(3) hl(h,(a)) = hG(h.lf(a)) = p,f(a(b’)-‘baa’)abb’, 

oh+(pF(a)) = ,o,(ph+(a)) = (b’)-‘ap~(a(b’)Y’baC’). 

ProojI (2) Assume a(b’)-‘a-’ = vh for u E G_ and h E G+ as usual, so that we have 
h;(a) = ha = vP’a(b’)-‘. Then 

hl(k$(a)) = pF(habb’a-‘h-‘)ha = pT(hab-‘a-‘)a 

= pf(v-‘a(b’)-‘b-‘a-‘)a 

= pz(a(bb’)-‘a-‘)a = h&,(a). 

For the other actions, the proofs are similar. 
(3) We shall prove only the first part. Put a(b’))‘a-’ = gu for g E G+ and u E G-, so 

that hi(u) = ua = g-‘a(b’)-’ Then 

L.bf(hG(a)) = h,f(ua) = pT(uab-‘(ua)-‘)ua 

= p~(abb’b’a-‘g)g-la(b’)P1 

= p,f(ab-‘b’a-‘)a(b’)-’ = pS(abb’b’a-I)-’ (abb’b’a-‘)a(b’)-’ 

= p, (a(b’)-‘ba-‘)ab-’ 

On the other hand, put abb’a-’ = vh, so that h;(a) = ha = v-‘ab-‘. Then 

hb,(hb+(a)) = p,(ha(b’)-‘(ha)-‘)ha = p,(a(b’)-‘ba-‘v)v-lab-’ 

= p,(a(b’)-‘baa’)ub-‘. 0 

6.10. Theorem. The in$initesimal actionsfor h+, h-, pf, and p- are thefollowing, where 
A,B~g=g+@g_anda~G: 

(1) hi(u) := -pr+(Ad(a)B)a, hi(u) := -pr-(Ad(u)B)a, 
pi(a) := -a pr+(Ad(aC’)B), p,(a) := -a pr-(Ad(a-‘)B). 
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Furthermore, as usual for left and right actions, for B. B’ E g we huve 

(3) h+(X;) = h$, 5 h+(Y;) = -A;, 

P+(Xi) = -P;/. P+(Yi) = -P,, 
h-(X;) = -hi,, h-(Y,) = h& 
p-(Xi) = -pi. P-(F) = & 

so thut we can reconstruct the dressing actions ji%)m h+, A-, p +, and p-. For exumple, the 
(local) left dressing action for A+ is given by 

G+ x (G_)Op x G --f G, 

(g, u).u = hlki_, (a) = p,(auga-‘)ag-‘. 

The (local) left dressing uction for A_ is given by 

G+ x (G_)“” x G --f G. 
(8, u>.a = hi”+, (a) = pr (ag ~ -‘u-‘a-‘)uu. 0 

6.11. Remark. The dressing actions of G+ on G_, and of G_ on G+ can also be recon- 
structed from this scheme. For (g, u) E G+ x G_ they are given by restricting the (local) 
actions hf. rL_, p+, and p- of G on G appropriately (see 6.9): 

hi(g) := P,f(w’g-‘)g* h,(u) := p,(ug-‘u-$4, 

p,;(g) := gpJt(gu-‘g-l), p,(u) := up,-(ug-‘UC’). 

Note that in these formulae one should replace, say, /?:(gu-‘g-‘)g = pT(gu-‘) only if 
the action is complete, or only for g and u near e, since the left-hand side is defined for all 
x and for II near e, whereas the right-hand side needs both g and u near e. 

6.12. Corollary. The dressing actions qf G+ on G-, and qf G_ on G+ are (local) Poisson 
actions. 

ProoJ We prove it only, say, for the left dressing action of G_ on G+. At least locally this 
is given by 

h+ : G_ x G+ + G+, A+@, g) = hlf(g) = P,+($w’), 

Due to Theorem 5.4(5) the mapping 

$ : G+ x G_ 3 (g, U) H gu-’ E G 
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is a Poisson mapping (G+ x G_, AC+ x A’- ) + (G, A-). By Corollary 5.5 the (local) 

projection p: : (G, A_) -+ (Gf, -AG+) is a Poisson mapping, so the composition h+ = 
p,+ 0 Cj is also Poisson. 0 

7. Examples 

7.1. Example. Let us assume that in the Manin decomposition r~ = g+ $ n_ the sub- 
algebra TV_ is commutative then the simply connected Lie group G is isomorphic to the 
cotangent bundle T*G+ 2: G+ DC g_, the semidirect product of G+ and the dual Lie 
algebra, which is complete with respect to the dressing actions. cp : G+ x :I_ + T*G+ is 
the left trivialization, + is the right trivialization. This situation was described in detail in 
our earlier paper [2]. 

7.2. Example. We consider II+ = gu(2) with the standard matrix basis 

1 i 0 
el = - 2 ( 0 -i > 

1 0 1 1 0 i 
’ e2 = - 2 ( -1 0 > ’ a=2 c i o > , 

satisfying [et, 4 = e3, [ez, e3] = et, and [e3. el] = e2. The following commutation 
rules [e;, e,Z] = ez, [ey, e:] = eq, and [e;. e;] = 0 for the dual basis in R- = n$ make 
g = R+ @ n_ into a Lie bialgebra which is isomorphic to t;t(2, C) as six-dimensional real 
algebra with g_ = ~b(2, C), where the elements of the dual basis are given by 

e;=i(o _01). e;=(i ai), eG=(i i). 
The invariant symmetric pairing can be recognized as 

y(A, El) = 2Imtr(AB). 

We consider now the double Lie group G = SL(2, C) with G+ = SU(2) and G- = 
SB(2, C). We will write the elements as follows: 

where Zi E C, z1z4 - ~27.3 = 1, 

G+ = SU(2) 3 g = 
( ) 

; 
-6 
a ’ 

wherea, v E Cc, IcyI + Iv]* = 1, 

G- = SB(2,C) 3 u = ’ ’ 
( 1 0 t-’ ’ 

where t > 0. y E @. 

We define A+(a) = i(ra + ar) with r = xi e’ A ei on SL(2, C) as explained in 5.1. 
We then extend it onto the whole space GL(2, C) of all invertible matrices by admitting 
a E GL(2, Cc). Since the left and right invariant vector fields on gl(2, C) Z C4 g Rs satisfy 
the same commutation rules as their restrictions to SL(2, C), we will get a Poisson structure. 
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Of course it is tangent to SL(2, C), so that, if we consider the Poisson brackets between all - - - 
matrix elements zi and ii, the functions det = zr 24 - 227.3 and det = ztz4 - ~22~ will be 
Casimirs for the bracket. Thus we get a Poisson structure on GL(2, C) whose restriction 
to SL(2, C) is exactly A+. We calculated the following Poisson brackets, which were also 
obtained independently by Zakrzewski [36]. 

{ZI, z21 = -iizlzz. 

{ZI, 231 = +izlz3. 

{Zl, z4) = 0, 

(ZI, 21) = -iilz11* - 

Iz3. %I = -$ihl*, 

(ZI, 221 = -iz3Z4, 

(21,231 =o, 

(ZI, 241 = iizlZ4, 

Iz2, z31 = izIz4, 

(~2, z4J = $iz2z4, 

(~3, ~41 = -iiz3z4. 

ilz312, (22, 22) = -$i1z212 - ilzll’ - ilz4I2, 

(~4,141 = -iilz412 - ilz312, 

{z2,Z31 = iiz2i3. 

(z2,141 = -izlz3, 

(z3, z41 = 0. 

The lacking commutators may be obtained from this list if we remember that the Poisson - 
bracket is real, e.g. (ii. Zj} = (z;, zj}. One can then check that indeed det and det are 
Casimir functions, and that zt ++ 24,~~ H -z2, and z3 M -z3 defines a symmetry of the 
bracket associated to the inverse a H u-’ in SL(2, C). 

Our double group is complete since we have the following unique (Iwasawa) decompo- 
sitions, where 

cp -’ : SL(2, C) -+ SU(2).SB(2. C), where s = 

$-’ : SL(2, C) -+ SB(2, C),SU(2), where t = 

Therefore, the bracket ( , ) is globally s ymplectic on SL(2, C). This bracket is pro- 
jectable on the subgroups SU(2) and SB(2, C), and for the ‘left trivialization’ SL(2, C) = 
SU(2) . SB(2, C) it gives us the Poisson-Lie brackets on SU(2): 

((-u,(Y) = -iJv12, (V, V) = 0. 
(a, v) = $iou, (U, V} = -i&c, 

(a, V) = +icrV, (U, u) = -$icUv, 

and on SB(2, C): 

iv, tl = $iyt, (7, y) = i t2 - ;li 
c ) 
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It is possible to linearize SB(2, C) with this Lie-Poisson structure. The mapping 
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H (log(t), Re w, Im w), 

where 

J R2 - log*(t) 
R = iarcosh 

Iy12 + t2 + l/t2 
W= 

lY12 . y> 2 > 

gives us a Poisson diffeomorphism between (SB(2, C), A’-) and the linear Poisson struc- 
ture defining the coadjoint bracket on gu(2), namely z& A a, + ya, A & +x8, A 9;. These 
formulae were first obtained by Xu, see also [36]. 

Since H2(SL(2, C)) = 0, the symplectic structure o = A+’ is exact, so there is a 
potential 0 with d8 = w. Moreover, (SL(2, C). A+) is symplectomorphic to T*SU(2) 
with the canonical symplectic structure, since (G_ = SB(2, C), AC-) isPoisson equivalent 
to eb(2, C) with its Gu(2)-dual Poisson structure. So from the Poisson point of view there 
is no difference between (SL(2, C), A+) and T*SU(2) (they are isomorphic as symplectic 
groupoids), but the group structures differ. 

7.3. Example. On the ‘ax + b’ Lie algebra o+ spanned by X1, X2 with commutator 
[Xl, X2] = X2 the cobracket given by b’(X1) = 0 and b’(X2) = X1 A X2 defines a 
Lie bialgebra structure. The Lie bracket on <I- = R+ * is then given by [Yl , Y2] = Y2, and 
the remaining commutator relations on Q = n+ $ tl_ is given by [Xl, Yt] = 0, [Xl, Y2] = 
-Y) , [X2, Yt ] = X2, [X2. Y-J = -Xl + Yt A matrix representation of (1 is the Lie algebra 
$x1(2, R) via 

X1=(:, $ X2=(; ;). Y,=(; ;). Y2=(‘: 0). 

with the metric 

y(A. B) = tr(A/BJ), where J = 

The subgroups Gk of the Lie group G = GL+(2, [w) of matrices with determinant > 0 are 
given by 

G+={(; ;):x>O}, G_={(; ;):b>O], 

The calculation of the affine Poisson tensor A+ on G in the coordinates 

gives A+ = xya, A a, + aba, A ab + xb(a, A ab + a, A a,). 

It is degenerate at points with xb = 0 and vanishes at n = b = 0. This shows that 
G+G_ # G. Indeed, one can easily see that G+G_ consists of all matrices with b # 0, 
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and G-G+ of those with x # 0. This should mean that the dressing vector fields are not 
all complete. Indeed, h+(Xl) = -x(bx - ya)&, which restricted to G+ gives -.x2&, a 
vector field on Rf which is not complete since its flow is given by 
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